XUAN Wenbo, YAO Huan, JIANG Xiaobin, et al. Accuracy of predicting strip defects in fillet welds on type-B sleeves using S1 curve[J]. Oil & Gas Storage and Transportation, 2025, 44(4): 1−10.
Citation: XUAN Wenbo, YAO Huan, JIANG Xiaobin, et al. Accuracy of predicting strip defects in fillet welds on type-B sleeves using S1 curve[J]. Oil & Gas Storage and Transportation, 2025, 44(4): 1−10.

Accuracy of predicting strip defects in fillet welds on type-B sleeves using S1 curve

More Information
  • Received Date: August 15, 2024
  • Revised Date: September 20, 2024
  • Available Online: March 30, 2025
  • Objective Defects in fillet welds connecting type-B sleeves, particularly strip defects such as incomplete penetration and cracks within horizontal weld junction zones, present significant engineering challenges in phased array ultrasonic testing (PAUT). To effectively detect these defects, it is crucial to address practical issues in fillet weld testing, including the optimization of testing techniques and the improvement of both defect detection probabilities and accuracy in length measurements.
    Methods A finite element model for fillet welds on B-type sleeves was developed, incorporating artificial notches to simulate strip defects in the welds. This model was used to acquire acoustic scattering signals from notches at various orientations and to compute scattering coefficient matrices. The results enabled the derivation of an S1 curve, which reflects the relationship between scattered energy and notch orientations. Additionally, the influence of wedge angles and pipeline thickness on accuracy in notch length measurements was analyzed using the S1 curve. Total focus simulation imaging and experiments were conducted to validate the accuracy prediction based on the S1 curve.
    Results The total focus method exhibited a 100% detection probability of notches at all orientations within the horizontal weld junction zone. The combined application of a linear array probe and a 35° wedge yielded the optimal length measurements for notches ranging from 120° to 150°, achieving accuracy greater than 70%, with total focus images closely resembling the actual notch morphology. Conversely, for notches beyond this angle range, only 1 or 2 end corners were detected. The combined use of 30°, 35°, and 40° wedges in fillet weld testing expanded the range of notch angles suitable for testing by about 20°. Compared with the measurement results obtained via total focus imaging, the prediction results for accuracy in notch length measurements based on the S1 curve showed errors not exceeding 14%.
    Conclusion The S1 curve approach provides a means to optimize defect detection parameters for fillet welds connecting B-type sleeves in practical engineering applications. Suitable wedge angles can be selected based on the rough orientations of defects, effectively improving detection accuracy.
  • [1]
    杨玉锋,李杨,张强,汪澍,张希祥. 油气管道失效数据分析及失效原因研究[J]. 天然气与石油,2022,40(3):28−34. DOI: 10.3969/j.issn.1006-5539.2022.03.005.

    YANG Y F, LI Y, ZHANG Q, WANG S, ZHANG X X. Research on failure data analysis and causes of failure of oil and gas pipeline[J]. Natural Gas and Oil, 2022, 40(3): 28−34. doi: 10.3969/j.issn.1006-5539.2022.03.005
    [2]
    李荣光,张巍,赵振,于憬,汤斌,孙旭,等. 高钢级管道环焊缝缺陷修复技术探讨[J]. 油气储运,2020,39(3):307−312,360. DOI: 10.6047/j.issn.1000-8241.2020.03.009.

    LI R G, ZHANG W, ZHAO Z, YU J, TANG B, SUN X, et al. Discussion on repair technology of girth weld defects of high-grade steel pipelines[J]. Oil & Gas Storage and Transportation, 2020, 39(3): 307−312, 360. doi: 10.6047/j.issn.1000-8241.2020.03.009
    [3]
    赵新伟,王高峰,杨锋平,白强,刘迎来,冼国栋,等. 管道环焊缝修复用高强度B型套筒及应用关键技术[J]. 油气储运,2022,41(10):1141−1149. DOI: 10.6047/j.issn.1000-8241.2022.10.003.

    ZHAO X W, WANG G F, YANG F P, BAI Q, LIU Y L, XIAN G D, et al. High-strength type-B sleeve for pipeline girth weld repair and its key application technology[J]. Oil & Gas Storage and Transportation, 2022, 41(10): 1141−1149. doi: 10.6047/j.issn.1000-8241.2022.10.003
    [4]
    牟彦春,金南辉,葛翔. 电站锅炉接管座角焊缝超声相控阵检测技术[J]. 无损检测,2011,33(1):75−76,78.

    MU Y C, JIN N H, GE X. Ultrasonic phased array inspection of fillet pipe butt weld for plant boiler[J]. Nondestructive Testing, 2011, 33(1): 75−76, 78.
    [5]
    MA W F, REN J J, ZHOU H P, WANG K, LUO J H, ZHAO X W, et al. Effect of type B steel sleeve rehabilitate girth weld defect on the microstructure and property of X80 pipeline[J]. Materials Science Forum, 2019, 944: 854−861. DOI: 10.4028/www.scientific.net/MSF.944.854.
    [6]
    LI W T, ZHOU Z G, LI Y. Inspection of butt welds for complex surface parts using ultrasonic phased array[J]. Ultrasonics, 2019, 96: 75−82. DOI: 10.1016/j.ultras.2019.02.011.
    [7]
    KUMAR S, MENAKA M, VENKATRAMAN B. Simulation and experimental analysis of austenitic stainless steel weld joints using ultrasonic phased array[J]. Measurement Science and Technology, 2019, 31(2): 024005. DOI: 10.1088/1361-6501/ab48a3/meta.
    [8]
    张鸿博,吴宇轩,胡博,刘琰,贾鹏军,裴翠祥. B型套筒角焊缝缺陷相控阵超声检测数值模拟[J]. 油气储运,2022,41(8):931−938. DOI: 10.6047/j.issn.1000-8241.2022.08.008.

    ZHANG H B, WU Y X, HU B, LIU Y, JIA P J, PEI C X. Numerical simulation of phased array ultrasonic testing for fillet weld defects of type-B sleeve[J]. Oil & Gas Storage and Transportation, 2022, 41(8): 931−938. doi: 10.6047/j.issn.1000-8241.2022.08.008
    [9]
    WU Y X, PEI C X, ZHANG H B, LIU Y, JIA P J. A fast finite element simulation method of phased array ultrasonic testing and its application in sleeve fillet weld inspection[J]. Applied Sciences, 2022, 12(11): 5384. DOI: 10.3390/app12115384.
    [10]
    江小斌,莫润阳,何旭,刘琰. B型套筒角焊缝的多模式全聚焦检测[J]. 无损探伤,2023,47(6):19−23.

    JIANG X B, MO R Y, HE X, LIU Y. Multi-view total focusing method detection of B-type sleeve fillet weld[J]. Nondestructive Testing Technology, 2023, 47(6): 19−23.
    [11]
    ZHANG J, DRINKWATER B W, WILCOX P D. Defect characterization using an ultrasonic array to measure the scattering coefficient matrix[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(10): 2254−2265. DOI: 10.1109/TUFFC.924.
    [12]
    ZHANG J, DRINKWATER B W, WILCOX P D. The use of ultrasonic arrays to characterize Crack-Like defects[J]. Journal of Nondestructive Evaluation, 2010, 29(4): 222−232. DOI: 10.1007/s10921-010-0080-6.
    [13]
    BAI L, VELICHKO A, DRINKWATER B W. Ultrasonic characterization of crack-like defects using scattering matrix similarity metrics[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(3): 545−559. DOI: 10.1109/TUFFC.2014.006848.
    [14]
    周正干,李洋,周文彬. 相控阵超声后处理成像技术研究、应用和发展[J]. 机械工程学报,2016,52(6):1−11. DOI: 10.3901/JME.2016.06.001.

    ZHOU Z G, LI Y, ZHOU W B. Ultrasonic phased array post-processing imaging techniques: a review[J]. Journal of Mechanical Engineering, 2016, 52(6): 1−11. doi: 10.3901/JME.2016.06.001
    [15]
    ZHANG J, FELICE M V, VELICHKO A, WILCOX P D. Angular and frequency behaviour of elastodynamic scattering from embedded scatterers[J]. Ultrasonics, 2019, 99: 105964. DOI: 10.1016/j.ultras.2019.105964.
    [16]
    董明,于祥军,马宏伟,陈渊,曹现刚,万翔,等. 空间脉冲响应和有限元混合的超声回波建模方法[J]. 声学学报,2023,48(5):996−1003. DOI: 10.12395/0371-0025.2022037.

    DONG M, YU X J, MA H W, CHEN Y, CAO X G, WAN X, et al. A hybrid method for ultrasonic echo of defects using spatial impulse response and finite element method[J]. Acta Acustica, 2023, 48(5): 996−1003. doi: 10.12395/0371-0025.2022037
    [17]
    王小民,廉国选,安志武. 裂纹尖端超声散射场及动应力集中的动态光弹观测[J]. 声学学报,2016,41(5):549−554. DOI: 10.15949/j.cnki.0371-0025.2016.05.002.

    WANG X M, LIAN G X, AN Z W. Photoelastic visualization and measurement of ultrasonic scattering fields and dynamic stress concentrations at crack tips[J]. Acta Acustica, 2016, 41(5): 549−554. doi: 10.15949/j.cnki.0371-0025.2016.05.002
    [18]
    RATASSEPP M, LOWE M J S, CAWLEY P, KLAUSON A. Scattering of the fundamental shear horizontal mode in a plate when incident at a through crack aligned in the propagation direction of the mode[J]. The Journal of the Acoustical Society of America, 2008, 124(5): 2873−2882. DOI: 10.1121/1.2987426.
    [19]
    HOLMES C, DRINKWATER B W, WILCOX P D. Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation[J]. NDT & E International, 2005, 38(8): 701−711. DOI: 10.1016/j.ndteint.2005.04.002.
    [20]
    BUDYN N, CROXFORD A J, BEVAN R L T, ZHANG J, WILCOX P D. Characterisation of small embedded two-dimensional defects using multi-view Total Focusing Method imaging algorithm[J]. NDT & E International, 2021, 119: 102413. DOI: 10.1016/j.ndteint.2021.102413.
    [21]
    宋泽宇,胡静,莫润阳. 多模式全聚焦法对焊缝内部条状缺陷的检测及定量[J]. 无损检测,2023,45(7):53−60. DOI: 10.11973/wsjc202307011.

    SONG Z Y, HU J, MO R Y. Detection and quantification of weld internal defects by multi-mode total focusmethod[J]. Nondestructive Testing, 2023, 45(7): 53−60. doi: 10.11973/wsjc202307011

Catalog

    Article views (1) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return