Citation: | LUO Zhengshan, LYU Haipeng, LUO Jihao. Corrosion rate prediction for long-distance submarine pipelines based on MWIWOA-SVM[J]. Oil & Gas Storage and Transportation, 2025, 44(5): 1−10. |
[1] |
徐学武. 海底油气管道内腐蚀分析与防护[J]. 腐蚀与防护,2014,35(5):500−504.
XU X W. Analysis and protection of internal corrosion for submarine pipelines of oil and gas[J]. Corrosion & Protection, 2014, 35(5): 500−504.
|
[2] |
COLE I S, MARNEY D. The science of pipe corrosion: a review of the literature on the corrosion of ferrous metals in soils[J]. Corrosion Science, 2012, 56: 5−16. DOI: 10.1016/j.corsci.2011.12.001.
|
[3] |
王英波,殷振兴,胡浩,唐晓. 海洋大气环境中架空管道保温层下腐蚀的调研及防护对策[J]. 腐蚀与防护,2021,42(7):53−58. DOI: 10.11973/fsyfh-202107011.
WANG Y B, YIN Z X, HU H, TANG X. Investigation and protection of corrosion under insulation of overhead pipeline in marine atmospheric environment[J]. Corrosion Science, 2021, 42(7): 53−58. doi: 10.11973/fsyfh-202107011
|
[4] |
骆正山,宋莹莹,毕傲睿. 基于GRA-RFR的油气集输管道内腐蚀速率预测[J]. 材料保护,2020,53(3):95−100. DOI: 10.16577/j.cnki.42-1215/tb.2020.03.017.
LUO Z S, SONG Y Y, BI A R. Prediction model of internal corrosion rate in oil and gas gathering pipelines based on GRA-RFR[J]. Materials Protection, 2020, 53(3): 95−100. doi: 10.16577/j.cnki.42-1215/tb.2020.03.017
|
[5] |
张梁,高源,杨光,李民强. BP神经网络模型的改进及其在海底管道外腐蚀速率预测中的应用[J]. 安全与环境学报,2023,23(11):3882−3888. DOI: 10.13637/j.issn.1009-6094.2022.1608.
ZHANG L, GAO Y, YANG G, LI M Q. Improvement of the BP neural network model and its application in the prediction of the external corrosion rate of submarine pipeline[J]. Journal of Safety and Environment, 2023, 23(11): 3882−3888. doi: 10.13637/j.issn.1009-6094.2022.1608
|
[6] |
肖荣鸽,王栋,王勤学. 基于ASO-BP神经网络的海底油气管道腐蚀速率预测[J]. 化学工业与工程,2022,39(6):109−116. DOI: 10.13353/j.issn.1004.9533.20216004.
XIAO R G, WANG D, WANG Q X. Prediction of corrosion rate of submarine oil and gas pipelines based on ASO-BP neural network[J]. Chemical Industry and Engineering, 2022, 39(6): 109−116. doi: 10.13353/j.issn.1004.9533.20216004
|
[7] |
ZHI Y J, FU D M, YANG T, ZHANG D W, LI X G, PEI Z B. Long-term prediction on atmospheric corrosion data series of carbon steel in China based on NGBM(1, 1) model and genetic algorithm[J]. Anti-Corrosion Methods and Materials, 2019, 66(4): 403−411. DOI: 10.1108/ACMM-11-2017-1858.
|
[8] |
贾海韵,胡丽华,李夏侨,曲志豪,王竹,常炜,等. 基于核主成分分析算法的海底管道内腐蚀风险预测[J]. 腐蚀与防护,2023,44(3):82−87. DOI: 10.11973/fsyfh-202303012.
JIA H Y, HU L H, LI X Q, QU Z H, WANG Z, CHANG W, et al. Internal corrosion risk prediction of submarine pipeline based on kernel principal component analysis[J]. Corrosion and Protection, 2023, 44(3): 82−87. doi: 10.11973/fsyfh-202303012
|
[9] |
TIAN L, LUO Y. A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 575−596. DOI: 10.1007/s10845-019-01469-w.
|
[10] |
HATAMI S, GHADERI-ARDAKANI A, NIKNEJAD-KHOMAMI M, KARIMI-MALEKABADI F, RASAEI M R, MOHAMMADI A H. On the prediction of CO2 corrosion in petroleum industry[J]. The Journal of Supercritical Fluids, 2016, 117: 108−112. DOI: 10.1016/j.supflu.2016.05.047.
|
[11] |
梁昌晶,谢波,刘延庆,刘志娟,郭自强,任春燕,等. 基于KPCA-GWO-SVM的埋地管道土壤腐蚀速率预测[J]. 油气储运,2021,40(8):938−944. DOI: 10.6047/j.issn.1000-8241.2021.08.016.
LIANG C J, XIE B, LIU Y Q, LIU Z J, GUO Z Q, REN C Y, et al. Prediction of soil corrosion rate of buried pipeline based on KPCA-GWO-SVM[J]. Oil & Gas Storage and Transportation, 2021, 40(8): 938−944. doi: 10.6047/j.issn.1000-8241.2021.08.016
|
[12] |
王盼锋,王寿喜,马钢,全青. 基于PCA-PSO-SVM模型的海底多相流管道内腐蚀速率预测[J]. 安全与环境工程,2020,27(2):183−189. DOI: 10.13578/j.cnki.issn.1671-1556.2020.02.025.
WANG P F, WANG S X, MA G, QUAN Q. Prediction of internal corrosion rate of submarine multiphase flow pipelines based on PCA-PSO-SVM model[J]. Safety and Environmental Engineering, 2020, 27(2): 183−189. doi: 10.13578/j.cnki.issn.1671-1556.2020.02.025
|
[13] |
李响,余建星,苗春生,郭帅,齐凯,陈达兴. 基于遗传算法SVM的海洋环境腐蚀速率预测[J]. 中国海洋平台,2018,33(5):56−62. DOI: 10.3969/j.issn.1001-4500.2018.05.008.
LI X, YU J X, MIAO C S, GUO S, QI K, CHEN D X. Prediction of corrosion rate in marine environment based on support vector machine combining with genetic algorithm[J]. China Offshore Platform, 2018, 33(5): 56−62. doi: 10.3969/j.issn.1001-4500.2018.05.008
|
[14] |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51−67. DOI: 10.1016/j.advengsoft.2016.01.008.
|
[15] |
师国东,胡明茂,宫爱红,龚青山,郭庆贺,谭浩. 基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型[J/OL]. 计算机集成制造系统:1−24[2024-09-11]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230724.1508.002.html.
SHI G D, HU M M, GONG A H, GONG Q S, GUO Q H, TAN H. Optimal prediction model of vehicle fuel consumption based on XGBoost-MSIWOA-LSTM[J/OL]. Computer Integrated Manufacturing Systems: 1−24[2024-09-11]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230724.1508.002.html.
|
[16] |
VAPNIK V N. 统计学习理论[M]. 许建华,张学工,译. 北京:电子工业出版社,2004:1-559.
VAPNIK V N. Statistical learning theory[M]. XU J H, ZHANG X G, translated. Beijing: Publishing House of Electronics Industry, 2004: 1-559.
|
[17] |
刘昆. 粒子群算法优化支持向量机的网络流量混沌预测[J]. 现代电子技术,2019,42(2):120−123. DOI: 10.16652/j.issn.1004-373x.2019.02.028.
LIU K. Chaotic prediction of network traffic based on particle swarm algorithm optimization and support vector machine[J]. Modern Electronics Technique, 2019, 42(2): 120−123. doi: 10.16652/j.issn.1004-373x.2019.02.028
|
[18] |
梁文娟,李雪艳. 基于ARIMA、LS-SVM和BP神经网络组合模型的航空运输飞行事故征候预测[J]. 安全与环境工程,2018,25(1):130−136. DOI: 10.13578/j.cnki.issn.1671-1556.2018.01.023.
LIANG W J, LI X Y. Flight incidents prediction of air transportation based on the combined model of ARIMA, LS-SVM and BPNN[J]. Safety and Environmental Engineering, 2018, 25(1): 130−136. doi: 10.13578/j.cnki.issn.1671-1556.2018.01.023
|
[19] |
单梁,强浩,李军,王执铨. 基于Tent映射的混沌优化算法[J]. 控制与决策,2005,20(2):179−182. DOI: 10.13195/j.cd.2005.02.60.shanl.013.
SHAN L, QIANG H, LI J, WANG Z Q. Chaotic optimization algorithm based on Tent map[J]. Control and Decision, 2005, 20(2): 179−182. doi: 10.13195/j.cd.2005.02.60.shanl.013
|
[20] |
TIZHOOSH H R. Opposition-Based learning: a new scheme for machine intelligence[C]. Vienna: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), 2005: 695−701.
|
[21] |
林娟,钟一文,马森林. 改进的反向蛙跳算法求解函数优化问题[J]. 计算机应用研究,2013,30(3):760−763. DOI: 10.3969/j.issn.1001-3695.2013.03.030.
LIN J, ZHONG Y W, MA S L. Improved opposition-based shuffled frog leaping algorithm for function optimization problems[J]. Application Research of Computers, 2013, 30(3): 760−763. doi: 10.3969/j.issn.1001-3695.2013.03.030
|
[22] |
RANA N, ABD LATIFF M S, ABDULHAMID S M, MISRA S. A hybrid whale optimization algorithm with differential evolution optimization for multi-objective virtual machine scheduling in cloud computing[J]. Engineering Optimization, 2022, 54(12): 1999−2016. DOI: 10.1080/0305215X.2021.1969560.
|
[23] |
任小康,郝瑞芝,孙正兴,史变霞. 基于单纯形法的量子粒子群优化算法[J]. 微电子学与计算机,2010,27(1):154−157. DOI: 10.19304/j.cnki.issn1000-7180.2010.01.041.
REN X K, HAO R Z, SUN Z X, SHI B X. Quantum_ behaved particle swarm optimization algorithm based on simplex method[J]. Microelectronics & Computer, 2010, 27(1): 154−157. doi: 10.19304/j.cnki.issn1000-7180.2010.01.041
|
[24] |
张潮,冯锋. 混沌策略和单纯形法改进的鲸鱼优化算法[J]. 中国科技论文,2020,15(3):293−299. DOI: 10.3969/j.issn.2095-2783.2020.03.007.
ZHANG C, FENG F. Whale optimization algorithm based on chaotic strategy and simplex method[J]. China Sciencepaper, 2020, 15(3): 293−299. doi: 10.3969/j.issn.2095-2783.2020.03.007
|
[25] |
王秋萍,丁成,王晓峰. 一种基于改进KH与KHM聚类的混合数据聚类算法[J]. 控制与决策,2020,35(10):2449−2458. DOI: 10.13195/j.kzyjc.2019.0086.
WANG Q P, DING C, WANG X F. A hybrid data clustering algorithm based on improved krill herd algorithm and KHM clustering[J]. Control and Decision, 2020, 35(10): 2449−2458. doi: 10.13195/j.kzyjc.2019.0086
|
[26] |
雍欣,高岳林,赫亚华,王惠敏. 多策略融合的改进萤火虫算法[J]. 计算机应用,2022,42(12):3847−3855. DOI: 10.11772/j.issn.1001-9081.2021101830.
YONG X, GAO Y L, HE Y H, WANG H M. Improved firefly algorithm based on multi-strategy fusion[J]. Journal of Computer Applications, 2022, 42(12): 3847−3855. doi: 10.11772/j.issn.1001-9081.2021101830
|
[27] |
骆正山,马昌宝,王小完. 基于RS-MSWOA-LSSVM的油气管道失效压力预测[J]. 安全与环境工程,2022,29(4):163−171. DOI: 10.13578/j.cnki.issn.1671-1556.20211155.
LUO Z S, MA C B, WANG X W. Prediction of oil and gas pipeline failure pressure based on RS-MSWOA-LSSVM[J]. Safety and Environmental Engineering, 2022, 29(4): 163−171. doi: 10.13578/j.cnki.issn.1671-1556.20211155
|
[28] |
RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2005: 79-102.
|