LI Jiaqing, HE Shuaizhen, ZHAO Zifeng, et al. Water-oxygen-stress coupled effects on liquid ammonia stress corrosion behavior in X80 pipeline steel[J]. Oil & Gas Storage and Transportation, 2025, 44(3): 271−279. DOI: 10.6047/j.issn.1000-8241.2025.03.003
Citation: LI Jiaqing, HE Shuaizhen, ZHAO Zifeng, et al. Water-oxygen-stress coupled effects on liquid ammonia stress corrosion behavior in X80 pipeline steel[J]. Oil & Gas Storage and Transportation, 2025, 44(3): 271−279. DOI: 10.6047/j.issn.1000-8241.2025.03.003

Water-oxygen-stress coupled effects on liquid ammonia stress corrosion behavior in X80 pipeline steel

More Information
  • Received Date: December 23, 2024
  • Revised Date: January 20, 2025
  • Published Date: January 22, 2025
  • Objective In the context of the “dual carbon” goals, liquid ammonia is anticipated to serve as an efficient and safe hydrogen storage carrier. However, during long-distance pipeline transportation of liquid ammonia, stress corrosion cracking may occur in the pipes, leading to leakage and compromising the intrinsic safety of the pipeline operation. Therefore, it is crucial to investigate the susceptibility of pipeline steel to stress corrosion from liquid ammonia to ensure pipeline safety.
    Methods To analyze the stress corrosion behavior of X80 pipeline steel in a liquid ammonia environment with impurities, C-ring stress corrosion tests were conducted under varying levels of water, oxygen, and stress. The coupled effects of these impurities and stress on the corrosion behavior were quantitatively assessed using weight loss and control variable methods. This study clarified the evolution and internal mechanisms of liquid ammonia stress corrosion in pipeline steel based on corrosion rates, micro-morphology, and corrosion products.
    Results In anhydrous liquid ammonia environment, the corrosion rate of pipeline steel increased with higher oxygen content and rose sharply with increased stress. When water with a mass fraction of 0.20% was added to oxygen-containing liquid ammonia, the corrosion rates of pipeline steel decreased within the studied range of oxygen concentrations. The coupled effect of oxygen concentration and stress can lead to the formation of corrosion products on the surface of pipeline steel. At 100% of yield strength, corrosion products appeared as granular deposits, and cracks began to initiate and propagate. As stress increased to 125% and 150% of yield strength, additional cracks formed on the surface of the pipeline steel, partially connecting with one another, while the corrosion morphology shifted to cementitious deposits accompanied by crack formation. When adding water with mass fractions of 0.20% and 1.00%, respectively, only a few microcracks and corrosion products appeared on the surface of pipeline steel, even under high stress, indicating that a certain amount of water can inhibit liquid ammonia stress corrosion cracking in pipeline steel.
    Conclusion During the design, construction, and operation of liquid ammonia pipelines, it is essential to consider the influence of factors such as the mixing of oxygen impurity, the high stress resistance of pipes, and residual strain from construction on liquid ammonia stress corrosion cracking. If necessary, adding a small amount of water can mitigate the risk of corrosion and enhance the safety of high-grade steel pipelines.
  • [1]
    李加庆,冯智雨,梁辉龙,尹鹏博,滕霖,陈崇启,等. 复杂输送环境下液氨腐蚀行为及防护技术研究进展[J]. 油气储运,2024,43(2):121−133,162. DOI: 10.6047/j.issn.1000-8241.2024.02.001.

    LI J Q, FENG Z Y, LIANG H L, YIN P B, TENG L, CHEN C Q, et al. A review of research progress on the corrosion behavior and relevant protection techniques of liquid ammonia under complex transmission environments[J]. Oil & Gas Storage and Transportation, 2024, 43(2): 121−133, 162. doi: 10.6047/j.issn.1000-8241.2024.02.001
    [2]
    YANG G L, ZHANG G X, CAO D Q, ZHA D L, GAO X L, SU B. China’s provincial-level sustainable energy transition requires accelerating renewable energy technological innovation[J]. Energy, 2024, 288: 129672. DOI: 10.1016/j.energy.2023.129672.
    [3]
    JIANG L L, FU X Z. An ammonia–hydrogen energy roadmap for carbon neutrality: opportunity and challenges in China[J]. Engineering, 2021, 7(12): 1688−1691. DOI: 10.1016/j.eng.2021.11.004.
    [4]
    张岑, 魏华, 庄妍, 欧阳琰. 海上风电制氢经济评价模型及关键影响参数[J]. 天然气工业,2023,43(2):146−154. DOI:10. 3787/j. issn. 1000-0976. 2023. 02. 015.

    ZHANG C, WEI H, ZHUANG Y, OU Y Y. Economic evaluation model of offshore wind to hydrogen and its key influence parameters[J]. Natural Gas Industry, 2023, 43(2): 146−154. doi: 10.3787/j.issn.1000-0976.2023.02.015
    [5]
    中华人民共和国国家发展和改革委员会,国家能源局. 国家发展改革委 国家能源局 关于印发《“十四五”现代能源体系规划》的通知[EB/OL]. (2022-01-29)[2024-11-29]. http://zfxxgk.nea.gov.cn/2022-01/29/c_1310524241.htm.

    National Development and Reform Commission, National Energy Administration. Notice of the National Development and Reform Commission and the National Energy Administration on issuing the “14th Five Year Plan for Modern Energy System”[EB/OL]. (2022-01-29)[2024-11-29]. http://zfxxgk.nea.gov.cn/2022-01/29/c_1310524241.htm.
    [6]
    陈海生,李泓,徐玉杰,陈满,王亮,戴兴建,等. 2022年中国储能技术研究进展[J]. 储能科学与技术,2023,12(5):1516−1552. DOI: 10.19799/j.cnki.2095-4239.2023.0330.

    CHEN H S, LI H, XU Y J, CHEN M, WANG L, DAI X J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516−1552. doi: 10.19799/j.cnki.2095-4239.2023.0330
    [7]
    周原冰,龚乃玮,王皓界,肖晋宇,张赟. 中国电动汽车发展及车网互动对新型储能配置的影响[J]. 中国电力,2024,57(10):1−11. DOI: 10.11930/j.issn.1004-9649.202405058.

    ZHOU Y B, GONG N W, WANG H J, XIAO J Y, ZHANG Y. Study on the influence of electric vehicle development and the vehicle-grid interaction on new energy storage configuration in China[J]. Electric Power, 2024, 57(10): 1−11. doi: 10.11930/j.issn.1004-9649.202405058
    [8]
    曾悦,王月,张学瑞,宋玺文,夏博文,陈梓颀. 可再生能源合成绿氨研究进展及氢-氨储运经济性分析[J]. 化工进展,2024,43(1):376−389. DOI: 10.16085/j.issn.1000-6613.2023-0228.

    ZENG Y, WANG Y, ZHANG X R, SONG X W, XIA B W, CHEN Z Q. Research progress of green ammonia synthesis from renewable energy and economic analysis of hydrogen-ammonia storage and transportation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 376−389. doi: 10.16085/j.issn.1000-6613.2023-0228
    [9]
    王复越,任毅,张哲睿,赵坦. 液氨储运用钢研究进展及展望[J]. 石油管材与仪器,2024,10(2):8−12. DOI: 10.19459/j.cnki.61-1500/te.2024.02.002.

    WANG F Y, REN Y, ZHANG Z R, ZHAO T. Research progress and prospect on steel for liquid ammonia storage and transportation[J]. Petroleum Tubular Goods & Instruments, 2024, 10(2): 8−12. doi: 10.19459/j.cnki.61-1500/te.2024.02.002
    [10]
    滕霖,尹鹏博,聂超飞,闫锋,赵立前,党富华,等. “氨-氢”绿色能源路线及液氨储运技术研究进展[J]. 油气储运,2022,41(10):1115−1129. DOI: 10.6047/j.issn.1000-8241.2022.10.001.

    TENG L, YIN P B, NIE C F, YAN F, ZHAO L Q, DANG F H, et al. Research progress on “ammonia-hydrogen” green energy roadmap and storage & transportation technology of liquid ammonia[J]. Oil & Gas Storage and Transportation, 2022, 41(10): 1115−1129. doi: 10.6047/j.issn.1000-8241.2022.10.001
    [11]
    MORA-MENDOZA J L, HERNANDEZ-GAYOSSO M J, MORALES-SERRAT D A, ROQUE-OMS O, DEL ANGEL D A, ZAVALA-OLIVARES G. Evaluation of stress corrosion cracking damage to an API 5L X52 pipeline transporting ammonia: a case study[J]. Materials Sciences and Applications, 2016, 7(10): 610−622. DOI: 10.4236/msa.2016.710050.
    [12]
    KIM C D, WILDE B E, PHELPS E H. Stress corrosion cracking of line-pipe steels in anhydrous ammonia[J]. Corrosion, 1975, 31(7): 255−262. DOI: 10.5006/0010-9312-31.7.255.
    [13]
    陈新武,陈珮珊,金鑫,李树松,杨全毅. 压力和含水量对L360N管线钢在液氨中腐蚀的影响[J]. 化学与粘合,2024,46(6):598−601,635. DOI: 10.3969/j.issn.1001-0017.2024.06.015.

    CHEN X W, CHEN P S, JIN X, LI S S, YANG Q Y. Effect of pressure and water content on the corrosion of L360N pipeline steel in liquid ammonia[J]. Chemistry and Adhesion, 2024, 46(6): 598−601, 635. doi: 10.3969/j.issn.1001-0017.2024.06.015
    [14]
    卢志明,陈冰冰,高增梁. 16MnR钢在液氨环境中的应力腐蚀裂纹扩展研究[J]. 材料工程,2007(10):7−10. DOI: 10.3969/j.issn.1001-4381.2007.10.002.

    LU Z M, CHEN B B, GAO Z L. Stress corrosion cracking of 16MnR low alloy steel in anhydrous ammonia service[J]. Journal of Materials Engineering, 2007(10): 7−10. doi: 10.3969/j.issn.1001-4381.2007.10.002
    [15]
    ARDY H, SASMITA F, PRADANA E A P. The corrosion study of 90Cu-10Ni (UNS C70600) materials in ammonia and sulfide environments[J]. AIP Conference Proceedings, 2021, 2338(1): 040007.
    [16]
    LUNDE L, NYBORG R. The effect of oxygen and water on stress corrosion cracking of mild steel in liquid and vaporous ammonia[J]. Plant/Operations Progress, 1987, 6(1): 11−16. DOI: 10.1002/prsb.720060107.
    [17]
    魏安安,郑涛,陆怡,张于宝,黄发圣. 国内炼油厂污水罐腐蚀现状及失效原因分析[J]. 腐蚀与防护,2019,40(4):308−312. DOI: 10.11973/fsyfh-201904014.

    WEI A A, ZHENG T, LU Y, ZHANG Y B, HUANG F S. Corrosion status and failure reason analysis of sewage tanks in domestic refineries[J]. Corrosion and Protection, 2019, 40(4): 308−312. doi: 10.11973/fsyfh-201904014
    [18]
    梁旭. 在用液氨管道保冷层下局部腐蚀现象研究[J]. 中国特种设备安全,2017,33(8):72−77,80. DOI: 10.3969/j.issn.1673-257X.2017.08.017.

    LIANG X. Study on local corrosion of in-service liquid ammonia pipeline under cold keeping layer[J]. China Special Equipment Safety, 2017, 33(8): 72−77, 80. doi: 10.3969/j.issn.1673-257X.2017.08.017
    [19]
    CHAE H, WANG H, HONG M, KIM W C, KIM J G, KIM H, et al. Stress corrosion cracking of a copper pipe in a heating water supply system[J]. Metals and Materials International, 2020, 26(7): 989−997. DOI: 10.1007/s12540-019-00386-0.
    [20]
    许令顺. 小分子在模型催化剂表面的吸附与反应[D]. 合肥:中国科学技术大学,2012.

    XU L S. Adsorption and reaction of small molecules on model catalyst surfaces[D]. Hefei: University of Science and Technology of China, 2012.
    [21]
    李加庆,冯智雨,梁辉龙,尹鹏博,滕霖,陈崇启,等. 复杂输送环境下液氨腐蚀行为及防护技术研究进展[J]. 油气储运,2024,43(2):121−133,162. DOI: 10.6047/j.issn.1000-8241.2024.02.001.

    LI J Q, FENG Z Y, LIANG H L,YIN P B, TENG L, CHEN C Q, et al. A review of research progress on the corrosion behavior and relevant protection techniques of liquid ammonia under complex transmission environments[J]. Oil & Gas Storage and Transportation, 2024, 43(2): 121−133, 162. doi: 10.6047/j.issn.1000-8241.2024.02.001
  • Related Articles

    [1]ZHANG Xiaoqiang, YUN Ze, JIANG Qingmei, LONG Xun, LI Yan, CAO Penghao. Prediction model for cooling time in the heat-affected zone of girth welds in fully automatic welding of X80M pipeline[J]. Oil & Gas Storage and Transportation.
    [2]ZHAO Zhenxue, SHI Yongjie, ZHANG Lifeng, YU Huichao. Outbound volume prediction algorithm of product oil depot based on time series and fuzzy inference[J]. Oil & Gas Storage and Transportation, 2022, 41(9): 1095-1102. DOI: 10.6047/j.issn.1000-8241.2022.09.013
    [3]CAO Yang, WANG Honghong, LIN Chao, LI Zhongtao. Prediction on running time of pigs in submarine pipelines[J]. Oil & Gas Storage and Transportation, 2022, 41(4): 451-457. DOI: 10.6047/j.issn.1000-8241.2022.04.013
    [4]FENG Liang. Prediction of pressurizing time for commissioning of natural gas pipeline[J]. Oil & Gas Storage and Transportation, 2016, 35(1): 59-62. DOI: 10.6047/j.issn.1000-8241.2016.01.011
    [5]Kang Yilong, Zhang Rengong, Lai Juncheng, . Vacuum-drying technique applied in Panyu-Huizhou Submarine Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2011, 30(3): 173-176. DOI: CNKI:13-1093/TE.20110312.1142.005
    [6]Tang Yi, Fan Xiaoxia, Gong Jian, . Forecast on Running Distance and Time of Pig in FuNa Gas Transmission Pipeline[J]. Oil & Gas Storage and Transportation, 2010, 29(8): 627-629. DOI: 10.6047/j.issn.1000-8241.2010.08.020
    [7]ZHU Xiaolan, LI Changjun, . Simulation on the Drying Natural Gas Pipeline with Dehumidified Air[J]. Oil & Gas Storage and Transportation, 2007, 26(8): 27-29. DOI: 10.6047/j.issn.1000-8241.2007.08.008
    [8]WAN Xinqiang, SUN Bijun. The Application of Dry Air Desiccating Method in Long Distance Natural Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2007, 26(4): 26-32. DOI: 10.6047/j.issn.1000-8241.2007.04.008
    [9]LIN Bo, CHEN Yanxiao, . Prediction on the Evacuation Time for Drying of Long-distance Pipeline[J]. Oil & Gas Storage and Transportation, 2006, 25(10): 35-37.
    [10]HAO Jianbin, WANG Yijian, . The Application of Dry Air Pigging/Drying Method in Gas Transmission Pipeline[J]. Oil & Gas Storage and Transportation, 2002, 21(2): 51-54. DOI: 10.6047/j.issn.1000-8241.2002.02.018

Catalog

    Article views (6) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return