Citation: | FAN Yuran, SHUAI Yi, ZHANG Tieyao, et al. Strain aging characteristics and prediction method for girth welds in X80 steel pipelines[J]. Oil & Gas Storage and Transportation, 2025, 44(2): 184−193. DOI: 10.6047/j.issn.1000-8241.2025.02.007 |
[1] |
帅健,张银辉. 高钢级管道环焊缝的应变集中特性研究[J]. 石油管材与仪器,2020,6(2):8−14. DOI: 10.19459/j.cnki.61-1500/te.2020.02.002.
SHUAI J, ZHANG Y H. Strain concentration characteristics of girth welds in high-grade pipelines[J]. Petroleum Tubular Goods & Instruments, 2020, 6(2): 8−14. doi: 10.19459/j.cnki.61-1500/te.2020.02.002
|
[2] |
CHENG F. Environmental hazard: monitor safety of aged fuel pipelines[J]. Nature, 2016, 529(7585): 156. DOI: 10.1038/529156e.
|
[3] |
帅健,王旭,张银辉,武旭. 高钢级管道环焊缝主要特征及安全性评价[J]. 油气储运,2020,39(6):623−631. DOI: 10.6047/j.issn.1000-8241.2020.06.003.
SHUAI J, WANG X, ZHANG Y H, WU X. Main characteristics and safety assessment of girth welds in high grade steel pipelines[J]. Oil & Gas Storage and Transportation, 2020, 39(6): 623−631. doi: 10.6047/j.issn.1000-8241.2020.06.003
|
[4] |
丁建林,西昕,张对红. 能源安全战略下中国管道输送技术发展与展望[J]. 油气储运,2022,41(6):632−639. DOI: 10.6047/j.issn.1000-8241.2022.06.005.
DING J L, XI X, ZHANG D H. Development and outlook of China’s pipeline transportation technologies under energy security strategy[J]. Oil & Gas Storage and Transportation, 2022, 41(6): 632−639. doi: 10.6047/j.issn.1000-8241.2022.06.005
|
[5] |
冼国栋,吕游. 油气管道环焊缝缺陷排查及处置措施研究[J]. 石油管材与仪器,2020,6(2):42−45. DOI: 10.19459/j.cnki.61-1500/te.2020.02.008.
XIAN G D, LYU Y. Inspection and disposal of girth weld defects of oil and gas pipelines[J]. Petroleum Tubular Goods & Instruments, 2020, 6(2): 42−45. doi: 10.19459/j.cnki.61-1500/te.2020.02.008
|
[6] |
戴联双,考青鹏,杨辉,胡亚博. 高强度钢管道环焊缝隐患治理措施研究[J]. 石油管材与仪器,2020,6(2):32−37. DOI: 10.19459/j.cnki.61-1500/te.2020.02.006.
DAI L S, KAO Q P, YANG H, HU Y B. Hazard control measurement of girth weld in high strength steel pipeline[J]. Petroleum Tubular Goods & Instruments, 2020, 6(2): 32−37. doi: 10.19459/j.cnki.61-1500/te.2020.02.006
|
[7] |
华罗懿,陆理平,帅义. 环焊缝根部内凹缺陷对管道内压承载性能的影响[J]. 石油管材与仪器,2023,9(1):76−82,87. DOI: 10.19459/j.cnki.61-1500/te.2023.01.014.
HUA L Y, LU L P, SHUAI Y. Effect of internal concavity defect at the root of girth weld on ultimate internal pressure bearing capacity of in-service pipelines[J]. Petroleum Tubular Goods & Instruments, 2023, 9(1): 76−82, 87. doi: 10.19459/j.cnki.61-1500/te.2023.01.014
|
[8] |
杨辉,王富祥,陈健,雷铮强,玄文博,考青鹏. 油气管道环焊缝缺陷适用性评价现状与展望[J]. 天然气工业,2020,40(2):135−139. DOI: 10.3787/j.issn.1000-0976.2020.02.016.
YANG H, WANG F X, CHEN J, LEI Z Q, XUAN W B, KAO Q P. Current status and prospect of fitness-for-service evaluation on the girth weld defects in oil and gas line pipes[J]. Natural Gas Industry, 2020, 40(2): 135−139. doi: 10.3787/j.issn.1000-0976.2020.02.016
|
[9] |
王汉奎,商学欣,柳旺,宋明,何仁洋. 高钢级油气管线环焊缝应变时效脆化研究[J]. 压力容器,2021,38(5):8−13. DOI: 10.3969/j.issn.1001-4837.2021.05.002.
WANG H K, SHANG X X, LIU W, SONG M, HE R Y. Study on strain aging embrittlement of the girth weld of the high strength oil and gas pipeline[J]. Pressure Vessel Technology, 2021, 38(5): 8−13. doi: 10.3969/j.issn.1001-4837.2021.05.002
|
[10] |
COTTRELL A H, BILBY B A. Dislocation theory of yielding and strain ageing of iron[J]. Proceedings of the Physical Society. Section A, 1949, 62(1): 49−62. DOI: 10.1088/0370-1298/62/1/308.
|
[11] |
PUSSEGODA L N. Strain age embrittlement in reinforcing steels[D]. Christchurch: University of Canterbury, 1978.
|
[12] |
LOPORCARO G, PAMPANIN S, KRAL M V. Long-term strain-ageing effects on low-carbon steel reinforcement[J]. Construction and Building Materials, 2019, 228: 116606. DOI: 10.1016/j.conbuildmat.2019.07.332.
|
[13] |
YANG Y T, ZHANG B J, WANG Y, JIANG Z P, LI K H. Mechanical behaviors and constitutive model of structural steel influenced by strain aging[J]. Journal of Constructional Steel Research, 2022, 192: 107211. DOI: 10.1016/j.jcsr.2022.107211.
|
[14] |
ZHAO W G, CHEN M, CHEN S H, QU J B. Static strain aging behavior of an X100 pipeline steel[J]. Materials Science and Engineering A, 2012, 550: 418−422. DOI: 10.1016/j.msea.2012.04.095.
|
[15] |
WU Q, ZHANG Z, LIU Y, CHEN H. Strain aging behaviour of Cu-containing microalloyed low carbon seamless pipeline steel[J]. Materials Science and Technology, 2017, 33(1): 72−76. DOI: 10.1080/02670836.2016.1160526.
|
[16] |
LI Y H, CHI Q, FENG H, CHEN H Y, XU X F. Effect of strain aging on properties of X90 line pipe[J]. Engineering Failure Analysis, 2020, 118: 104844. DOI: 10.1016/j.engfailanal.2020.104844.
|
[17] |
JACOBS T R, MATLOCK D K, FINDLEY K O, COLLINS L. The short and long term effects of elevated temperature on the mechanical properties of line pipe steels[C]. Calgary: 2016 11th International Pipeline Conference, 2016: V003T05A035.
|
[18] |
JACOBS T R, MATLOCK D K, FINDLEY K O. Characterization of localized plastic deformation behaviors associated with dynamic strain aging in pipeline steels using digital image correlation[J]. International Journal of Plasticity, 2019, 123: 70−85. DOI: 10.1016/j.ijplas.2019.07.010.
|
[19] |
JACOBS T R. Elevated temperature mechanical properties of line pipe steels[D]. Golden: Colorado School of Mines, 2018.
|
[20] |
JACOBS T R, MATLOCK D K, FINDLEY K O. Fractographic analysis of anisotropic deformation behavior after tensile testing of pipeline steels at elevated temperatures[J]. Materials Science and Engineering a, 2017, 708: 478−481. DOI: 10.1016/j.msea.2017.10.022.
|
[21] |
HUNDY B B. Accelerated strain ageing of mild steel[J]. Journal of the Iron and Steel Institute, 1954, 178(1): 34−38.
|