Citation: | PAN Zhen, WU Jingjing, CHEN Yinan, ZHAO Shiyang. Simulation and performance optimization of a poly-generation system based on LNG cold energy utilization[J]. Oil & Gas Storage and Transportation, 2022, 41(7): 810-818. DOI: 10.6047/j.issn.1000-8241.2022.07.008 |
[1] |
倪维斗, 郑洪弢, 李政, 江宁. 多联产系统: 综合解决我国能源领域五大问题的重要途径[J]. 动力工程, 2003, 23(2): 2245-2251. https://www.cnki.com.cn/Article/CJFDTOTAL-DONG200302000.htm
NI W D, ZHENG H T, LI Z, JIANG N. Polygeneration: a very important way to overcome five challenges in energy field of China[J]. Power Engineering, 2003, 23(2): 2245-2251. https://www.cnki.com.cn/Article/CJFDTOTAL-DONG200302000.htm
|
[2] |
WANG X R, DAI Y P. Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: a comparative study[J]. Applied Energy, 2016, 170: 193-207. doi: 10.1016/j.apenergy.2016.02.112
|
[3] |
徐进良, 刘超, 孙恩慧, 朱兵国, 谢剑. 超临界二氧化碳动力循环研究进展及展望[J]. 热力发电, 2020, 49(10): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD202010002.htm
XU J L, LIU C, SUN E H, ZHU B G, XIE J. Review and perspective of supercritical carbon dioxide power cycles[J]. Thermal Power Generation, 2020, 49(10): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD202010002.htm
|
[4] |
LIANG Y, CAI L, GUAN Y W, LIU W B, XIANG Y L, LI J, et al. Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat[J]. Energy, 2020, 193: 116854. doi: 10.1016/j.energy.2019.116854
|
[5] |
夏家曦, 王红阳, 王江峰, 赵攀, 戴义平. 一种基于内燃机余热回收的冷电联供系统[J]. 工程热物理学报, 2017, 38(2): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201702003.htm
XIA J X, WANG H Y, WANG J F, ZHAO P, DAI Y P. Performance analysis of a combined cooling and power (CCP) system based on waste heat recovery of internal combustion engine[J]. Journal of Engineering Thermophysics, 2017, 38(2): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201702003.htm
|
[6] |
SONG Y H, WANG J F, DAI Y P, ZHOU E M. Thermodynamic analysis of a transcritical CO2 power cycle driven by solar energy with liquified natural gas as its heat sink[J]. Applied Energy, 2012, 92: 194-203. doi: 10.1016/j.apenergy.2011.10.021
|
[7] |
AKBARI A D, MAHMOUDI S M S. Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle[J]. Energy, 2014, 78: 501-512. doi: 10.1016/j.energy.2014.10.037
|
[8] |
WU C, WANG S S, LI J. Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants[J]. Energy Conversion and Management, 2018, 171: 936-952. doi: 10.1016/j.enconman.2018.06.041
|
[9] |
ZHAO H, DENG Q H, HUANG W T, WANG D, FENG Z P. Thermodynamic and economic analysis and multi-objective optimization of supercritical CO2 Brayton cycles[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(8): 081602. doi: 10.1115/1.4032666
|
[10] |
俞光灿, 李琦芬, 宋丽斐, 潘登宇, 谢伟, 王朝龙, 等. LNG冷能利用方式分类及其工艺流程[J]. 油气储运, 2019, 38(7): 728-737. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201907002.htm
YU G C, LI Q F, SONG L F, PAN D Y, XIE W, WANG C L, et al. Classification and technological processes of LNG cold energy utilization modes[J]. Oil & Gas Storage and Transportation, 2019, 38(7): 728-737. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201907002.htm
|
[11] |
薛鹏, 张引弟, 胡多多, 伍丽娟, 沈秋婉, 史宝成, 等. 管输工况对LNG冷能梯级利用效益的影响[J]. 油气储运, 2017, 36(11): 1284-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201711009.htm
XUE P, ZHANG Y D, HU D D, WU L J, SHEN Q W, SHI B C, et al. Influence of pipeline transportation conditions on the cascading utilization benefit of LNG cold energy[J]. Oil & Gas Storage and Transportation, 2017, 36(11): 1284-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201711009.htm
|
[12] |
杨经敏. LNG冷能发电梯级利用法的优化[J]. 油气储运, 2016, 35(4): 401-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201604011.htm
YANG J M. Optimization of cascade utilization of LNG cold energy for power generation[J]. Oil & Gas Storage and Transportation, 2016, 35(4): 401-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201604011.htm
|
[13] |
GÓMEZ M R, GARCIA R F, GÓMEZ J R, CARRIL J C. Thermodynamic analysis of a Brayton cycle and Rankine cycle arranged in series exploiting the cold exergy of LNG (liquefied natural gas)[J]. Energy, 2014, 66: 927-937.
|
[14] |
LI Y Y, LIU Y J, ZHANG G Q, YANG Y P. Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat[J]. Energy, 2020, 199: 117479.
|
[15] |
WANG J Y, WANG J F, DAI Y P, ZHAO P. Thermodynamic analysis and optimization of a transcritical CO2 geothermal power generation system based on the cold energy utilization of LNG[J]. Applied Thermal Engineering, 2014, 70(1): 531-540.
|
[16] |
NOH Y, KIM J, KIM J, CHANG D. Economic evaluation of BOG management systems with LNG cold energy recovery in LNG import terminals considering quantitative assessment of equipment failures[J]. Applied Thermal Engineering, 2018, 143: 1034-1045.
|
[17] |
ZHANG N, LIOR N. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization[J]. Energy, 2006, 31(10/11): 1666-1679.
|
[18] |
LIU Z M, HE T B. Exergoeconomic analysis and optimization of a Gas Turbine-Modular Helium Reactor with new organic Rankine cycle for efficient design and operation[J]. Energy Conversion and Management, 2020, 204: 112311.
|
[19] |
KHALJANI M, SARAY R K, BAHLOULI K. Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle[J]. Energy Conversion and Management, 2015, 97: 154-165.
|
[20] |
GHOLIZADEH T, VAJDI M, MOHAMMADKHANI F. Thermodynamic and thermoeconomic analysis of basic and modified power generation systems fueled by biogas[J]. Energy Conversion and Management, 2019, 181: 463-475.
|
[21] |
BARZEGARAVVAL H, HOSSEINI S E, WAHID M A, SAAT A. Effects of fuel composition on the economic performance of biogas-based power generation systems[J]. Applied Thermal Engineering, 2018, 128: 1543-1554.
|
[22] |
FANG Z H, SHANG L Y, PAN Z, YAO X Q, MA G Y, ZHANG Z E. Exergoeconomic analysis and optimization of a combined cooling, heating and power system based on organic Rankine and Kalina cycles using liquified natural gas cold energy[J]. Energy Conversion and Management, 2021, 238: 114148.
|
[23] |
SARKAR J, BHATTACHARYYA S. Optimization of recompression S-CO2 power cycle with reheating[J]. Energy Conversion and Management, 2009, 50(8): 1939-1945.
|
[24] |
ZHANG Z E, YAN Y F, ZHANG L, CHEN Y X, RAN J Y, PU G, et al. Theoretical study on CO2 absorption from biogas by membrane contactors: effect of operating parameters[J]. Industrial & Engineering Chemistry Research, 2014, 53(36): 14075-14083.
|
[25] |
张大同, 滕霖, 李玉星, 王武昌, 胡其会, 李顺丽, 等. 高含CO2的多相流体系节流效应模型[J]. 油气储运, 2018, 37(10): 1128-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201810008.htm
ZHANG D T, TENG L, LI Y X, WANG W C, HU Q H, LI S L, et al. Throttling effect model for multiphase flow system with high CO2 content[J]. Oil & Gas Storage and Transportation, 2018, 37(10): 1128-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201810008.htm
|
[26] |
张引弟, 胡多多, 刘畅, 刘捷, 田磊, 伍丽娟, 等. 石油石化行业CO2捕集、利用和封存技术的研究进展[J]. 油气储运, 2017, 36(6): 636-645. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201706009.htm
ZHANG Y D, HU D D, LIU C, LIU J, TIAN L, WU L J, et al. Research progress of CO2 capture, utilization and storage (CCUS) technologies in petroleum and petrochemical industry[J]. Oil & Gas Storage and Transportation, 2017, 36(6): 636-645. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201706009.htm
|
[1] | DUAN Jimiao, WANG Yan, LIU Huishu, GU Kecheng, GUAN Jinfa, LI Jiang, SHU Dan. Migration characteristics of oils in soil[J]. Oil & Gas Storage and Transportation, 2019, 38(7): 798-803. DOI: 10.6047/j.issn.1000-8241.2019.07.013 |
[2] | TANG Peilian, CHE Wenxia, LIU Yandong, REN Wenming, CHEN Zhou, BI Guanghui. Application of soil reinforcement technology in the field of station fill slope engineering[J]. Oil & Gas Storage and Transportation, 2017, 36(5): 585-589. DOI: 10.6047/j.issn.1000-8241.2017.05.019 |
[3] | GE Yanchao, XU Xiaohua, YANG Peng, ZHANG Yanfu, LIU Tao, WANG Yonghong. Design and construction of drainage, drying and inerting technology of Liwan 3-1 Subsea Pipeline[J]. Oil & Gas Storage and Transportation, 2014, 33(10): 1140-1144. DOI: 10.6047/j.issn.1000-8241.2014.10.025 |
[4] | Chen Rong, Chen Xiaoqin. Safety and economy evaluation of PPD-added oil pipeline in the 3/7 Block of Sudan[J]. Oil & Gas Storage and Transportation, 2011, 30(12): 899-901. DOI: CNKI:13-1093/TE.20110501.1931.001 |
[5] | Zeng Chunlei, Yu Da, Zhao Wenting, . Wax deposition law of seabed shipment crude oil pipeline in Sudan 3/7 Block[J]. Oil & Gas Storage and Transportation, 2011, 30(9): 654-658. DOI: CNKI:13-1093/TE.20110530.1855.001 |
[6] | Wang Qiankun, Xu Cheng, Mao Shan, . Shutdown Safety of Crude Oil Pipeline in Sudan Block 3/7[J]. Oil & Gas Storage and Transportation, 2010, 29(12): 885-890. |
[7] | Fu Zaiguo, Yu Bo. Research on Moisture-Heat-Stress Fields of the Soil around Oil Pipeline in Permafrost Region[J]. Oil & Gas Storage and Transportation, 2010, 29(8): 565-570. DOI: 10.6047/j.issn.1000-8241.2010.08.002 |
[8] | LI Yubin, HUANG Kun, . Artificial Neural Network-based Evaluation on Soil Corrosion Situation along Pipelines[J]. Oil & Gas Storage and Transportation, 2007, 26(8): 47-49. DOI: 10.6047/j.issn.1000-8241.2007.08.013 |
[9] | LIU Lingli, CHEN Chunjian, . The Reference Electrode used in Frozen Soil[J]. Oil & Gas Storage and Transportation, 2002, 21(9): 33-35. DOI: 10.6047/j.issn.1000-8241.2002.09.010 |
[10] | Gao Liqun, . Study on the Corrosion Behavior of A3 Steel in Salt Concentration Cell of Soil[J]. Oil & Gas Storage and Transportation, 2000, 19(2): 29-31. DOI: 10.6047/j.issn.1000-8241.2000.02.009 |