PAN Zhen, WU Jingjing, CHEN Yinan, ZHAO Shiyang. Simulation and performance optimization of a poly-generation system based on LNG cold energy utilization[J]. Oil & Gas Storage and Transportation, 2022, 41(7): 810-818. DOI: 10.6047/j.issn.1000-8241.2022.07.008
Citation: PAN Zhen, WU Jingjing, CHEN Yinan, ZHAO Shiyang. Simulation and performance optimization of a poly-generation system based on LNG cold energy utilization[J]. Oil & Gas Storage and Transportation, 2022, 41(7): 810-818. DOI: 10.6047/j.issn.1000-8241.2022.07.008

Simulation and performance optimization of a poly-generation system based on LNG cold energy utilization

More Information
  • Received Date: August 10, 2021
  • Revised Date: May 17, 2022
  • Available Online: August 20, 2023
  • In order to solve the problem that the organic working medium of a power generation system is easy to thermal decomposition at medium and high temperature, the waste heat was recovered with the supercritical and transcritical CO2 used in combination on the principle of "appropriate temperature and cascade utilization", and a poly-generation system based on LNG cold energy utilization was established. Herein, the system was simulated by Aspen HYSYS in terms of the process flow and evaluated from the prospective of thermal performance and exergoeconomy. Besides, the effect of main parameters on system performance was analyzed, and on this basis, the multi-objective optimization of system performance was carried out using Matlab. The results show that the reduction of split ratio in supercritical CO2 recompression Brayton cycle and compression ratio in refrigeration cycle can not only improve the system efficiency, but also reduce the average unit cost. In addition, the power generation efficiency, exergy efficiency and average unit cost of the optimized poly-generation system are 55.83%, 52.23% and 16.57 $/GJ, respectively, and the power generation efficiency has been enhanced by 14.05% in comparison to the system integrated with the single supercritical CO2 recompression Brayton cycle. Generally, the research results could provide an application idea for the utilization of LNG cold energy and the recovery of waste heat.
  • [1]
    倪维斗, 郑洪弢, 李政, 江宁. 多联产系统: 综合解决我国能源领域五大问题的重要途径[J]. 动力工程, 2003, 23(2): 2245-2251. https://www.cnki.com.cn/Article/CJFDTOTAL-DONG200302000.htm

    NI W D, ZHENG H T, LI Z, JIANG N. Polygeneration: a very important way to overcome five challenges in energy field of China[J]. Power Engineering, 2003, 23(2): 2245-2251. https://www.cnki.com.cn/Article/CJFDTOTAL-DONG200302000.htm
    [2]
    WANG X R, DAI Y P. Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: a comparative study[J]. Applied Energy, 2016, 170: 193-207. doi: 10.1016/j.apenergy.2016.02.112
    [3]
    徐进良, 刘超, 孙恩慧, 朱兵国, 谢剑. 超临界二氧化碳动力循环研究进展及展望[J]. 热力发电, 2020, 49(10): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD202010002.htm

    XU J L, LIU C, SUN E H, ZHU B G, XIE J. Review and perspective of supercritical carbon dioxide power cycles[J]. Thermal Power Generation, 2020, 49(10): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD202010002.htm
    [4]
    LIANG Y, CAI L, GUAN Y W, LIU W B, XIANG Y L, LI J, et al. Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat[J]. Energy, 2020, 193: 116854. doi: 10.1016/j.energy.2019.116854
    [5]
    夏家曦, 王红阳, 王江峰, 赵攀, 戴义平. 一种基于内燃机余热回收的冷电联供系统[J]. 工程热物理学报, 2017, 38(2): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201702003.htm

    XIA J X, WANG H Y, WANG J F, ZHAO P, DAI Y P. Performance analysis of a combined cooling and power (CCP) system based on waste heat recovery of internal combustion engine[J]. Journal of Engineering Thermophysics, 2017, 38(2): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201702003.htm
    [6]
    SONG Y H, WANG J F, DAI Y P, ZHOU E M. Thermodynamic analysis of a transcritical CO2 power cycle driven by solar energy with liquified natural gas as its heat sink[J]. Applied Energy, 2012, 92: 194-203. doi: 10.1016/j.apenergy.2011.10.021
    [7]
    AKBARI A D, MAHMOUDI S M S. Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle[J]. Energy, 2014, 78: 501-512. doi: 10.1016/j.energy.2014.10.037
    [8]
    WU C, WANG S S, LI J. Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants[J]. Energy Conversion and Management, 2018, 171: 936-952. doi: 10.1016/j.enconman.2018.06.041
    [9]
    ZHAO H, DENG Q H, HUANG W T, WANG D, FENG Z P. Thermodynamic and economic analysis and multi-objective optimization of supercritical CO2 Brayton cycles[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(8): 081602. doi: 10.1115/1.4032666
    [10]
    俞光灿, 李琦芬, 宋丽斐, 潘登宇, 谢伟, 王朝龙, 等. LNG冷能利用方式分类及其工艺流程[J]. 油气储运, 2019, 38(7): 728-737. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201907002.htm

    YU G C, LI Q F, SONG L F, PAN D Y, XIE W, WANG C L, et al. Classification and technological processes of LNG cold energy utilization modes[J]. Oil & Gas Storage and Transportation, 2019, 38(7): 728-737. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201907002.htm
    [11]
    薛鹏, 张引弟, 胡多多, 伍丽娟, 沈秋婉, 史宝成, 等. 管输工况对LNG冷能梯级利用效益的影响[J]. 油气储运, 2017, 36(11): 1284-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201711009.htm

    XUE P, ZHANG Y D, HU D D, WU L J, SHEN Q W, SHI B C, et al. Influence of pipeline transportation conditions on the cascading utilization benefit of LNG cold energy[J]. Oil & Gas Storage and Transportation, 2017, 36(11): 1284-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201711009.htm
    [12]
    杨经敏. LNG冷能发电梯级利用法的优化[J]. 油气储运, 2016, 35(4): 401-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201604011.htm

    YANG J M. Optimization of cascade utilization of LNG cold energy for power generation[J]. Oil & Gas Storage and Transportation, 2016, 35(4): 401-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201604011.htm
    [13]
    GÓMEZ M R, GARCIA R F, GÓMEZ J R, CARRIL J C. Thermodynamic analysis of a Brayton cycle and Rankine cycle arranged in series exploiting the cold exergy of LNG (liquefied natural gas)[J]. Energy, 2014, 66: 927-937.
    [14]
    LI Y Y, LIU Y J, ZHANG G Q, YANG Y P. Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat[J]. Energy, 2020, 199: 117479.
    [15]
    WANG J Y, WANG J F, DAI Y P, ZHAO P. Thermodynamic analysis and optimization of a transcritical CO2 geothermal power generation system based on the cold energy utilization of LNG[J]. Applied Thermal Engineering, 2014, 70(1): 531-540.
    [16]
    NOH Y, KIM J, KIM J, CHANG D. Economic evaluation of BOG management systems with LNG cold energy recovery in LNG import terminals considering quantitative assessment of equipment failures[J]. Applied Thermal Engineering, 2018, 143: 1034-1045.
    [17]
    ZHANG N, LIOR N. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization[J]. Energy, 2006, 31(10/11): 1666-1679.
    [18]
    LIU Z M, HE T B. Exergoeconomic analysis and optimization of a Gas Turbine-Modular Helium Reactor with new organic Rankine cycle for efficient design and operation[J]. Energy Conversion and Management, 2020, 204: 112311.
    [19]
    KHALJANI M, SARAY R K, BAHLOULI K. Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle[J]. Energy Conversion and Management, 2015, 97: 154-165.
    [20]
    GHOLIZADEH T, VAJDI M, MOHAMMADKHANI F. Thermodynamic and thermoeconomic analysis of basic and modified power generation systems fueled by biogas[J]. Energy Conversion and Management, 2019, 181: 463-475.
    [21]
    BARZEGARAVVAL H, HOSSEINI S E, WAHID M A, SAAT A. Effects of fuel composition on the economic performance of biogas-based power generation systems[J]. Applied Thermal Engineering, 2018, 128: 1543-1554.
    [22]
    FANG Z H, SHANG L Y, PAN Z, YAO X Q, MA G Y, ZHANG Z E. Exergoeconomic analysis and optimization of a combined cooling, heating and power system based on organic Rankine and Kalina cycles using liquified natural gas cold energy[J]. Energy Conversion and Management, 2021, 238: 114148.
    [23]
    SARKAR J, BHATTACHARYYA S. Optimization of recompression S-CO2 power cycle with reheating[J]. Energy Conversion and Management, 2009, 50(8): 1939-1945.
    [24]
    ZHANG Z E, YAN Y F, ZHANG L, CHEN Y X, RAN J Y, PU G, et al. Theoretical study on CO2 absorption from biogas by membrane contactors: effect of operating parameters[J]. Industrial & Engineering Chemistry Research, 2014, 53(36): 14075-14083.
    [25]
    张大同, 滕霖, 李玉星, 王武昌, 胡其会, 李顺丽, 等. 高含CO2的多相流体系节流效应模型[J]. 油气储运, 2018, 37(10): 1128-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201810008.htm

    ZHANG D T, TENG L, LI Y X, WANG W C, HU Q H, LI S L, et al. Throttling effect model for multiphase flow system with high CO2 content[J]. Oil & Gas Storage and Transportation, 2018, 37(10): 1128-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201810008.htm
    [26]
    张引弟, 胡多多, 刘畅, 刘捷, 田磊, 伍丽娟, 等. 石油石化行业CO2捕集、利用和封存技术的研究进展[J]. 油气储运, 2017, 36(6): 636-645. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201706009.htm

    ZHANG Y D, HU D D, LIU C, LIU J, TIAN L, WU L J, et al. Research progress of CO2 capture, utilization and storage (CCUS) technologies in petroleum and petrochemical industry[J]. Oil & Gas Storage and Transportation, 2017, 36(6): 636-645. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201706009.htm
  • Related Articles

    [1]DUAN Jimiao, WANG Yan, LIU Huishu, GU Kecheng, GUAN Jinfa, LI Jiang, SHU Dan. Migration characteristics of oils in soil[J]. Oil & Gas Storage and Transportation, 2019, 38(7): 798-803. DOI: 10.6047/j.issn.1000-8241.2019.07.013
    [2]TANG Peilian, CHE Wenxia, LIU Yandong, REN Wenming, CHEN Zhou, BI Guanghui. Application of soil reinforcement technology in the field of station fill slope engineering[J]. Oil & Gas Storage and Transportation, 2017, 36(5): 585-589. DOI: 10.6047/j.issn.1000-8241.2017.05.019
    [3]GE Yanchao, XU Xiaohua, YANG Peng, ZHANG Yanfu, LIU Tao, WANG Yonghong. Design and construction of drainage, drying and inerting technology of Liwan 3-1 Subsea Pipeline[J]. Oil & Gas Storage and Transportation, 2014, 33(10): 1140-1144. DOI: 10.6047/j.issn.1000-8241.2014.10.025
    [4]Chen Rong, Chen Xiaoqin. Safety and economy evaluation of PPD-added oil pipeline in the 3/7 Block of Sudan[J]. Oil & Gas Storage and Transportation, 2011, 30(12): 899-901. DOI: CNKI:13-1093/TE.20110501.1931.001
    [5]Zeng Chunlei, Yu Da, Zhao Wenting, . Wax deposition law of seabed shipment crude oil pipeline in Sudan 3/7 Block[J]. Oil & Gas Storage and Transportation, 2011, 30(9): 654-658. DOI: CNKI:13-1093/TE.20110530.1855.001
    [6]Wang Qiankun, Xu Cheng, Mao Shan, . Shutdown Safety of Crude Oil Pipeline in Sudan Block 3/7[J]. Oil & Gas Storage and Transportation, 2010, 29(12): 885-890.
    [7]Fu Zaiguo, Yu Bo. Research on Moisture-Heat-Stress Fields of the Soil around Oil Pipeline in Permafrost Region[J]. Oil & Gas Storage and Transportation, 2010, 29(8): 565-570. DOI: 10.6047/j.issn.1000-8241.2010.08.002
    [8]LI Yubin, HUANG Kun, . Artificial Neural Network-based Evaluation on Soil Corrosion Situation along Pipelines[J]. Oil & Gas Storage and Transportation, 2007, 26(8): 47-49. DOI: 10.6047/j.issn.1000-8241.2007.08.013
    [9]LIU Lingli, CHEN Chunjian, . The Reference Electrode used in Frozen Soil[J]. Oil & Gas Storage and Transportation, 2002, 21(9): 33-35. DOI: 10.6047/j.issn.1000-8241.2002.09.010
    [10]Gao Liqun, . Study on the Corrosion Behavior of A3 Steel in Salt Concentration Cell of Soil[J]. Oil & Gas Storage and Transportation, 2000, 19(2): 29-31. DOI: 10.6047/j.issn.1000-8241.2000.02.009

Catalog

    Article views (0) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return