SHEN Yan, LIU Rui, WANG Zi, XU Xiao, WANG Zili. Four-segmented design method and numerical simulation of LNG micro-channel vaporizer[J]. Oil & Gas Storage and Transportation, 2022, 41(3): 324-331. DOI: 10.6047/j.issn.1000-8241.2022.03.011
Citation: SHEN Yan, LIU Rui, WANG Zi, XU Xiao, WANG Zili. Four-segmented design method and numerical simulation of LNG micro-channel vaporizer[J]. Oil & Gas Storage and Transportation, 2022, 41(3): 324-331. DOI: 10.6047/j.issn.1000-8241.2022.03.011

Four-segmented design method and numerical simulation of LNG micro-channel vaporizer

More Information
  • Received Date: June 07, 2020
  • Revised Date: December 19, 2021
  • Available Online: August 20, 2023
  • Micro-channel vaporizer has the advantages of high heat exchange efficiency, high pressure resistance and compact structure, and has broad application prospect as an LNG vaporizer. Presently, most of the LNG micro-channel vaporizers are designed by the segmentation method, which requires massive calculation by the programming computation, and it is not conductive for its promotion and application in engineering. Therefore, a four-segmented design method was proposed for the LNG micro-channel vaporizer. The vaporizer is divided into 4 segments based on the temperature of working fluids under different phases. Then, the heat transfer amount, heat transfer area and pressure drop of each segment can be obtained through the heat balance calculation and structural design calculation, and thereby the total heat transfer area can be calculated. The calculation results have an error of 13.4% compared with that given in the reference. The numerical simulation for the flow and heat transfer characteristics of the designed micro-channel unit shows that the simulated values of the channel temperature and the pressure drop are well consistent with the calculated values of the four-segmented method, and thereby, the reliability of the four-segmented design method for the LNG micro-channel vaporizer is verified.Generally, the method has the characteristics of reasonable segmentation, less calculation, and intuitive and reliable results, which provides an effective way for the design and optimization of LNG micro-channel vaporizer.
  • [1]
    董龙飞, 李玉星, 韩辉. LNG绕管式换热器壳程对流换热数值模拟[J]. 油气储运, 2019, 38(6): 697-703. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201906016.htm

    DONG L F, LI Y X, HAN H. Numerical simulation on the convective heat transfer at the shell pass of spiral-wound LNG heat exchanger[J]. Oil & Gas Storage and Transportation, 2019, 38(6): 697-703. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201906016.htm
    [2]
    季鹏, 李玉星, 王武昌, 朱建鲁. 结构参数对绕管式换热器传热特性的影响[J]. 油气储运, 2015, 34(8): 886-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201508018.htm

    JI P, LI Y X, WANG W C, ZHU J L. Effect of structural parameter on heat transfer performance of coil-wound heat exchanger[J]. Oil & Gas Storage and Transportation, 2015, 34(8): 886-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201508018.htm
    [3]
    闫彦, 刘乐, 高俊杰, 徐春雷, 李玉星, 韩辉. 绕管式换热器壳侧液膜流动及分布特性[J]. 油气储运, 2019, 38(11): 1300-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201911016.htm

    YAN Y, LIU L, GAO J J, XU C L, LI Y X, HAN H. Flow and distribution characteristics of liquid film on shell side of spiralwound heat exchanger[J]. Oil & Gas Storage and Transportation, 2019, 38(11): 1300-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201911016.htm
    [4]
    曹学文, 石倩, 彭文山. 板翅式换热器结构优化及其性能数值模拟[J]. 油气储运, 2019, 38(9): 1048-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201909014.htm

    CAO X W, SHI Q, PENG W S. Structure optimization and performance numerical simulation of plate-fin heat exchanger[J]. Oil & Gas Storage and Transportation, 2019, 38(9): 1048-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201909014.htm
    [5]
    徐少杰, 高文学, 严荣松, 杨林, 王艳, 高文学. LNG空温式气化器传热问题的研究进展[J]. 天然气工业, 2020, 40(6): 130-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006019.htm

    XU S J, GAO W X, YAN R S, YANG L, WANG Y, GAO W X. Research progress on the heat transfer of ambient air LNG vaporizers[J]. Natural Gas Industry, 2020, 40(6): 130-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006019.htm
    [6]
    于改革, 陈永东, 李雪, 吴晓红. 印刷电路板式换热器传热与流动研究进展[J]. 流体机械, 2017, 45(12): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX201712016.htm

    YU G G, CHEN Y D, LI X, WU X H. Research progress in heat transfer and fluid flow of printed circuit heat exchanger[J]. Fluid Machinery, 2017, 45(12): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX201712016.htm
    [7]
    时红远, 刘华, 熊建国, 邱羽, 何雅玲. 丁胞与翼形肋片相结合的印刷电路板式换热器流动与换热特性的研究[J]. 工程热物理学报, 2019, 40(4): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201904021.htm

    SHI H Y, LIU H, XIONG J G, QIU Y, HE Y L. Study on flow and heat transfer characteristics of an airfoil printed circuit heat exchanger with dimples[J]. Journal of Engineering Thermophysics, 2019, 40(4): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201904021.htm
    [8]
    李仲珍, 郭少龙, 陶文铨. 超临界LNG管内流动与换热特性研究[J]. 工程热物理学报, 2013, 34(12): 2314-2317. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201312025.htm

    LI Z Z, GUO S L, TAO W Q. Studies of supercritical convective heat transfer of LNG in tube[J]. Journal of Engineering Thermophysics, 2013, 34(12): 2314-2317. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201312025.htm
    [9]
    李雪, 陈永东, 于改革, 吴晓红. 印刷电路板式换热器Zigzag通道流动与传热数值模拟[J]. 流体机械, 2017, 45(11): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX201711014.htm

    LI X, CHEN Y D, YU G G, WU X H. Numerical simulation on thermal-hydraulic performance of a Zigzag printed circuit heat exchanger[J]. Fluid Machinery, 2017, 45(11): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX201711014.htm
    [10]
    BAIK Y, JEON S, KIM B, JEON D, BYON C. Heat transfer performance of wavy-channeled PCHEs and the effects of waviness factors[J]. International Journal of Heat and Mass Transfer, 2017, 114: 809-815.
    [11]
    ANEESH A, SHARMA A, SRIVASTAVA A, CHAUDHURY P. Effects of wavy channel configurations on thermal-hydraulic characteristics of printed circuit heat exchanger(PCHE)[J]. International Journal of Heat and Mass Transfer, 2018, 118: 304-315.
    [12]
    YANG Y, LI H, YAO M, GAO W, ZHANG Y, ZHANG L. Investigation on the effects of narrowed channel cross-sections on the heat transfer performance of a wavy-channeled PCHE[J]. International Journal of Heat and Mass Transfer, 2019, 135: 33-43.
    [13]
    KIM W, BAIK Y, JEON S, JEON D, BYON C. A mathematical correlation for predicting the thermal performance of cross, parallel, and counterflow PCHEs[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1294-1302.
    [14]
    吴维武, 王东宝, 赵黎明, 袁振钦. 印刷电路板式LNG气化器分段设计计算方法研究[J]. 海洋工程装备与技术, 2016, 3(2): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-HYZB201602003.htm

    WU W W, WANG D B, ZHAO L M, YANG Z Q. Segmented design and calculation method for printed circuit heat exchanger as LNG vaporizer[J]. Ocean Engineering Equipment and Technology, 2016, 3(2): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-HYZB201602003.htm
    [15]
    刘生晖, 黄彦平, 郎雪梅, 赵大卫, 王俊峰, 刘光旭, 等. 基于流动和传热关联式的印刷电路板式换热器的几何设计[J]. 核动力工程, 2016(3): 106-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201603024.htm

    LIU S H, HUANG Y P, LANG X M, ZHAO D W, WANG J F, LIU G X, et al. Geometry design of printed circuit heat exchanger based on flow and heat transfer correlation[J]. Nuclear Power Engineering, 2016(3): 106-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201603024.htm
    [16]
    董爱华. 印刷电路板式换热器的设计分析[J]. 节能技术, 2019, 37(2): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJS201902016.htm

    DONG A H. Design analysis of printed circuit heat exchanger[J]. Energy Conservation Technology, 2019, 37(2): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJS201902016.htm
    [17]
    PARK M, SONG M, KIM E. Development of tritium permeation model for printed circuit heat exchanger[J]. Annals of Nuclear Energy, 2016, 98: 166-177. https://www.sciencedirect.com/science/article/pii/S030645491630620X
    [18]
    MA T, LI M, XU J, CAO F. Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1 000 MW S-CO2 coal fired power plant[J]. Energy, 2019, 175: 123-138.
    [19]
    贾丹丹, 赵忠超, 张永, 周依檬, 张艳瑞, 张林. 超临界LNG在印刷板式汽化器微细流道内的流动与换热性能数值研究[J]. 船舶工程, 2017, 39(5): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201705008.htm

    JIA D D, ZHAO Z C, ZHANG Y, ZHOU Y M, ZHANG Y R, ZHANG L. Numerical study of flow and heat transfer characteristics of supercritical LNG in micro-channel of printed circuit vaporizer[J]. Ship Engineering, 2017, 39(5): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201705008.htm
    [20]
    ADAMS T, ABDEL-KHALIK S, JETER S, QURESHI Z. An experimental investigation of single-phase forced convection in microchannels[J]. International Journal of Heat and Mass Transfer, 1998, 41(6): 851-857. https://www.sciencedirect.com/science/article/pii/S0017931097001804
    [21]
    KRASNOSCHEKOV E, PROTOPOPOV V. Heat transfer at supercritical region in flow of carbon dioxide and water in tubes[J]. Thermal Engineering, 1959, 12: 26-30.
    [22]
    SHAH M. A general correlation for heat transfer during film condensation inside pipes[J]. International Journal of Heat & Mass Transfer, 1979, 22(3): 557-568. https://www.sciencedirect.com/science/article/pii/0017931079900589
    [23]
    吴维武, 王东宝, 赵黎明, 袁振钦. 印刷电路板式LNG气化器换热试验研究[J]. 海洋工程装备与技术, 2016, 3(1): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HYZB201601007.htm

    WUW W, WANG D B, ZHAO L M, YANG Z Q. Experimental investigation of printed circuit heat exchanger as LNG vaporizer[J]. Ocean Engineering Equipment and Technology, 2016, 3(1): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HYZB201601007.htm

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return