Citation: | SONG Shangfei, SHI Bohui, SHI Guoyun, CHEN Yuchuan, LI Yunchao, LIAO Qingyun, LIU Lihao, GONG Jing. Transient mechanism model of hydrate slurry flow in oil-dominated flowlines[J]. Oil & Gas Storage and Transportation, 2021, 40(9): 1045-1055. DOI: 10.6047/j.issn.1000-8241.2021.09.010 |
[1] |
丁麟, 史博会, 吕晓方, 柳扬, 宫敬. 天然气水合物形成与生长影响因素综述[J]. 化工进展, 2016, 35(1): 57-64. doi: 10.16085/j.issn.1000-6613.2016.01.008
DING L, SHI B H, LYU X F, LIU Y, GONG J. Review of influence factors of natural gas hydrate formation and growth[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 57-64. doi: 10.16085/j.issn.1000-6613.2016.01.008
|
[2] |
宫敬, 王玮. 海洋油气混输管道流动安全保障[M]. 北京: 科学出版社, 2016: 116-122.
GONG J, WANG W. Offshore oil and gas mixed pipeline flow assurance[M]. Beijing: Science Press, 2016: 116-122.
|
[3] |
SLOAN E D. Gas hydrates: review of physical/chemical properties[J]. Energy & Fuels, 1998, 12(2): 191-196.
|
[4] |
YIN Z Y, KHURANA M, TAN H K, LINGA P. A review of gas hydrate growth kinetic models[J]. Chemical Engineering Journal, 2018, 342: 9-29. doi: 10.1016/j.cej.2018.01.120
|
[5] |
宋尚飞. 油水体系水合物分解机理与流动规律研究[D]. 北京: 中国石油大学(北京), 2020.
SONG S F. Study on hydrate decomposition and hydrate slurry flow in water/oil dispersion[D]. Beijing: China University of Petroleum(Beijing), 2020.
|
[6] |
TEIXEIRA A M, ARINELLI L D O, DE MEDEIROS J L, ARAÚJO O D Q F. Exergy analysis of monoethylene glycol recovery processes for hydrate inhibition in offshore natural gas fields[J]. Journal of Natural Gas Science and Engineering, 2016, 35(Part A): 798-813.
|
[7] |
KULBOTTEN H, LERVIK J K, KOGON J, NYSVEEN A. Implementation of direct electric heating as part of the hydrate control and management system[C]. Vancouver: The Eighteenth International Offshore and Polar Engineering Conference, 2008: ISOPE-I-08-231.
|
[8] |
CREEK J L. Efficient hydrate plug prevention[J]. Energy & Fuels, 2012, 26(7): 4112-4116.
|
[9] |
SUM A K, KOH C A, SLOAN E D. Developing a comprehensive understanding and model of hydrate in multiphase flow: from laboratory measurements to field applications[J]. Energy & Fuels, 2012, 26(7): 4046-4052.
|
[10] |
LEDERHOS J P, LONG J P, SUM A, CHRISTIANSEN R L, SLOAN E D Jr. Effective kinetic inhibitors for natural gas hydrates[J]. Chemical Engineering Science, 1996, 51(8): 1221-1229. doi: 10.1016/0009-2509(95)00370-3
|
[11] |
ZHAO H J, SUN M W, FIROOZABADI A. Anti-agglomeration of natural gas hydrates in liquid condensate and crude oil at constant pressure conditions[J]. Fuel, 2016, 180: 187-193. doi: 10.1016/j.fuel.2016.03.029
|
[12] |
BUI T, PHAN A, MONTEIRO D, LAN Q, CEGLIO M, ACOSTA E, et al. Evidence of structure-performance relation for surfactants used as antiagglomerants for hydrate management[J]. Langmuir, 2017, 33(9): 2263-2274. doi: 10.1021/acs.langmuir.6b04334
|
[13] |
DAVIES S R, BOXALL J A, DIEKER L E, SUM A K, KOH C A, SLOAN E D, et al. Predicting hydrate plug formation in oil-dominated flowlines[J]. Journal of Petroleum Science and Engineering, 2010, 72(3/4): 302-309.
|
[14] |
JOSHI S V, GRASSO G A, LAFOND P G, RAO I, WEBB E, ZERPA L E, et al. Experimental flowloop investigations of gas hydrate formation in high water cut systems[J]. Chemical Engineering Science, 2013, 97: 198-209. doi: 10.1016/j.ces.2013.04.019
|
[15] |
TURNER D J, MILLER K T, SLOAN E D. Methane hydrate formation and an inward growing shell model in water-in-oil dispersions[J]. Chemical Engineering Science, 2009, 64(18): 3996-4004. doi: 10.1016/j.ces.2009.05.051
|
[16] |
MAJID A A A, WU D T, KOH C A. A perspective on rheological studies of gas hydrate slurry properties[J]. Engineering, 2018, 4(3): 321-329. doi: 10.1016/j.eng.2018.05.017
|
[17] |
ZERPA L E, SLOAN E D, SUM A K, KOH C A. Overview of CSMHyK: a transient hydrate formation model[J]. Journal of Petroleum Science and Engineering, 2012, 98/99: 122-129.
|
[18] |
WANG Y, KOH C A, DAPENA J A, ZERPA L E. A transient simulation model to predict hydrate formation rate in both oil- and water-dominated systems in pipelines[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 126-134. doi: 10.1016/j.jngse.2018.08.010
|
[19] |
WANG Y, KOH C A, WHITE J, PATEL Z, ZERPA L E. Hydrate formation management simulations with anti-agglomerants and thermodynamic inhibitors in a subsea tieback[J]. Fuel, 2019, 252: 458-468. doi: 10.1016/j.fuel.2019.04.146
|
[20] |
CHAUDHARI P, ZERPA L E, SUM A K. A correlation to quantify hydrate plugging risk in oil and gas production pipelines based on hydrate transportability parameters[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 152-161. doi: 10.1016/j.jngse.2018.08.008
|
[21] |
WANG Z Y, ZHANG J B, SUN B J, CHEN L T, ZHAO Y, FU W Q. A new hydrate deposition prediction model for gas-dominated systems with free water[J]. Chemical Engineering Science, 2017, 163: 145-154. doi: 10.1016/j.ces.2017.01.030
|
[22] |
PASQUALETTE M A, CARNEIRO J N E, RIBEIRO G G, SOPRANA A B, GIRARDI V, BASSANI G S, et al. 1D numerical simulations of hydrate formation and transport in oil-dominated systems with a population balance framework[C]. Cannes: BHR 19th International Conference on Multiphase Production Technology, 2019: BHR-2019-231.
|
[23] |
SHI B H, LIU Y, DING L, LYU X F, GONG J. New simulator for gas-hydrate slurry stratified flow based on the hydrate kinetic growth model[J]. Journal of Energy Resources Technology, 2019, 141(1): 012906. doi: 10.1115/1.4040932
|
[24] |
刘陈伟, 李明忠, 梁晨, 韦青, 张国栋. 含水合物的油包水体系流动数值模拟[J]. 应用力学学报, 2013, 30(4): 574-580. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201304020.htm
LIU C W, LI M Z, LIANG C, WEI Q, ZHANG G D. Numerical simulation of flow in water-in-oil system with hydrate[J]. Chinese Journal of Applied Mechanics, 2013, 30(4): 574-580. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201304020.htm
|
[25] |
宋尚飞, 史博会, 兰文萍, 阮超宇, 陈玉川, 吴海浩, 等. 多相混输管道水合物流动的LedaFlow软件模拟[J]. 油气储运, 2019, 38(6): 655-661. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201906009.htm
SONG S F, SHI B H, LAN W P, RUAN C Y, CHEN Y C, WU H H, et al. Flow simulation of hydrate in multiphase pipeline by LedaFlow software[J]. Oil & Gas Storage and Transportation, 2019, 38(6): 655-661. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201906009.htm
|
[26] |
SHI G Y, SONG S F, SHI B H, GONG J, CHEN D L. A new transient model for hydrate slurry flow in oil-dominated flowlines[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108003. doi: 10.1016/j.petrol.2020.108003
|
[27] |
SHI B H, GONG J, SUN C Y, ZHAO J K, DING Y, CHEN G J. An inward and outward natural gas hydrates growth shell model considering intrinsic kinetics, mass and heat transfer[J]. Chemical Engineering Journal, 2011, 171(3): 1308-1316. doi: 10.1016/j.cej.2011.05.029
|
[28] |
SHI B H, SONG S F, LYU X F, LI W Q, WANG Y, DING L, et al. Investigation on natural gas hydrate dissociation from a slurry to a water-in-oil emulsion in a high-pressure flow loop[J]. Fuel, 2018, 233: 743-758. doi: 10.1016/j.fuel.2018.06.054
|
[29] |
SHI G Y, FAN D, GONG J. A new transient simulation method of natural gas-condensate two-phase flow in pipeline network[J]. Chemical Engineering Science, 2020, 223: 115742.
|
[30] |
FAN D, GONG J, ZHANG S N, SHI G Y, KANG Q, WU C C. Transient simulation of gas-condensate two-phase flow in pipes[J]. Journal of Petroleum Science and Engineering, 2020, 185: 106609. doi: 10.1016/j.petrol.2019.106609
|
[31] |
MATTHEWS P N, NOTZ P K, WIDENER M W, PRUKOP G. Flow loop experiments determine hydrate plugging tendencies in the field[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 330-338.
|
[32] |
PENG D Y, ROBINSON D B. A new two-constant equation of state[J]. Industrial and Engineering Chemistry Research Fundamentals, 1976, 15(1): 59-64. doi: 10.1021/i160057a011
|
[33] |
CHEN G J, GUO T M. A new approach to gas hydrate modelling[J]. Chemical Engineering Journal, 1998, 71(2): 145-151. doi: 10.1016/S1385-8947(98)00126-0
|
[34] |
CLARKE M, BISHNOI P R. Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition[J]. The Canadian Journal of Chemical Engineering, 2001, 79(1): 143-147. doi: 10.1002/cjce.5450790122
|
[35] |
CLARKE M A, BISHNOI P R. Measuring and modelling the rate of decomposition of gas hydrates formed from mixtures of methane and ethane[J]. Chemical Engineering Science, 2001, 56(16): 4715-4724.
|
[36] |
CLARKE M, BISHNOI P R. Determination of the intrinsic rate of ethane gas hydrate decomposition[J]. Chemical Engineering Science, 2000, 55(21): 4869-4883.
|
[37] |
CLARKE M A, BISHNOI P R. Determination of the intrinsic kinetics of CO2 gas hydrate formation using in situ particle size analysis[J]. Chemical Engineering Science, 2005, 60(3): 695-709.
|