HUANG Chaowei, LUO Yexin, WANG Song. Safety assessment method for exposed crossing pipelines caused by river scouring[J]. Oil & Gas Storage and Transportation, 2021, 40(8): 867-873. DOI: 10.6047/j.issn.1000-8241.2021.08.005
Citation: HUANG Chaowei, LUO Yexin, WANG Song. Safety assessment method for exposed crossing pipelines caused by river scouring[J]. Oil & Gas Storage and Transportation, 2021, 40(8): 867-873. DOI: 10.6047/j.issn.1000-8241.2021.08.005

Safety assessment method for exposed crossing pipelines caused by river scouring

More Information
  • Received Date: March 11, 2019
  • Revised Date: May 27, 2021
  • Available Online: August 20, 2023
  • Flood scouring the river bed where the directional drilling crossing pipeline is located may lead to pipeline exposure above the riverbed, as well as pipeline suspension and failure. The failure mechanism of pipeline during the whole process from initial exposure to fatigue failure under the action of hydrodynamic force was studied and the safety assessment method of the exposed pipeline due to scouring was proposed through the lateral stability, strength failure and suspended span fatigue analysis. In addition, safety assessment was performed for two actual pipelines with the solution was developed. The results indicate that the pipeline in Example 1 is in safe state for the maximum equivalent stress of the exposed pipeline is 176 MPa, which is less than the minimum yield strength of the pipeline, and there is no suspension. However, the pipeline in Example 2 cannot operate any more for the scouring time of flood on the pipeline exceeds its fatigue life during exposure. Thus, the research results provide theoretical support and basis for the safety assessment and the development of the replacement scheme of scoured pipelines.
  • [1]
    韩景宽, 李育天. 我国油气管网建设"十三五"回顾及"十四五"展望[J]. 石油规划设计, 2021, 32(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGH202101001.htm

    HAN J K, LI Y T. China oil and gas pipeline network construction review of the 13th Five-Year Plan and prospects for the 14th Five-Year Plan[J]. Petroleum Planning & Engineering, 2021, 32(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGH202101001.htm
    [2]
    丁鹏, 张秀玲, 沈珏新. 中国石油"一带一路""十四五"相关规划思考[J]. 石油规划设计, 2020, 31(6): 1-4. doi: 10.3969/j.issn.1004-2970.2020.06.001

    DING P, ZHANG X L, SHEN J X. Thoughts on CNPC's 14th Five-Year Plan regarding belt and road initiative (BRI)[J]. Petroleum Planning & Engineering, 2020, 31(6): 1-4. doi: 10.3969/j.issn.1004-2970.2020.06.001
    [3]
    明玉广, 王传富, 蓝强, 李卉, 刘振东, 吕树泉. 成品油管道定向穿越通明海峡泥浆性能控制技术[J]. 油气储运, 2021, 40(4): 431-437. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202104011.htm

    MING Y G, WANG C F, LAN Q, LI H, LIU Z D, LYU S Q. Control technology of drilling fluid performance in horizontal directional crossing of Tongming Strait by product pipeline[J]. Oil & Gas Storage and Transportation, 2021, 40(4): 431-437. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202104011.htm
    [4]
    谢崇文, 陈利琼, 何沫. One-Pass水下管道检测系统在定向钻穿越管段中的优化应用[J]. 油气储运, 2021, 40(1): 66-70, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202101012.htm

    XIE C W, CHEN L Q, HE M. Optimized application of One-Pass underwater pipeline inspection system in directional drilling crossing pipeline[J]. Oil & Gas Storage and Transportation, 2021, 40(1): 66-70, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202101012.htm
    [5]
    蒋庆梅, 张小强, 钟桂香, 张振永. 中俄东线黑龙江穿越段管材关键性能指标对比与确定[J]. 油气储运, 2020, 39(1): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202001016.htm

    JIANG Q M, ZHANG X Q, ZHONG G X, ZHANG Z Y. Comparison and determination of the key pipe performance indicators for Heilongjiang crossing section of China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(1): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202001016.htm
    [6]
    郭健. 穿越公路管道应力分析及ANSYS二次开发[J]. 煤气与热力, 2020, 40(12): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-MQRL202012012.htm

    GUO J. Stress analysis of pipeline crossing highway and secondary development of ANSYS[J]. Gas & Heat, 2020, 40(12): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-MQRL202012012.htm
    [7]
    段庆全, 国滨, 丁梦康. 不同敷设方式下穿越隧道天然气管道结构应力分析[J]. 石油和化工设备, 2021, 24(3): 5-8, 23. doi: 10.3969/j.issn.1674-8980.2021.03.002

    DUAN Q Q, GUO B, DING M K. Structural stress analysis of natural gas pipeline through tunnel under different laying modes[J]. Petro & Chemical Equipment, 2021, 24(3): 5-8, 23. doi: 10.3969/j.issn.1674-8980.2021.03.002
    [8]
    王小完, 骆济豪, 袁宏伟, 骆正山. 海底天然气管道疲劳破坏泄漏灾害研究[J]. 消防科学与技术, 2018, 37(6): 729-732. doi: 10.3969/j.issn.1009-0029.2018.06.004

    WANG X W, LUO J H, YUAN H W, LUO Z S. Hazard analysis on the offshore natural gas pipelines fatigue failure leakage[J]. Fire Science and Technology, 2018, 37(6): 729-732. doi: 10.3969/j.issn.1009-0029.2018.06.004
    [9]
    向敏, 刁洪涛, 张子涛, 王清惠, 杨毅. 水下穿越油气管道水流冲击作用下强度安全研究[J]. 工业安全与环保, 2017, 43(5): 66-68. doi: 10.3969/j.issn.1001-425X.2017.05.020

    XIANG M, DIAO H T, ZHANG Z T, WANG Q H, YANG Y. Study on strengthen safety of oil and gas pipelines under the impact of water flow[J]. Industrial Safety and Environmental Protection, 2017, 43(5): 66-68. doi: 10.3969/j.issn.1001-425X.2017.05.020
    [10]
    王全宝, 黄丽丽. 俄罗斯油气管道穿越小型河流的防冲刷措施[J]. 油气储运, 2018, 37(7): 836-840. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201807019.htm

    WANG Q B, HUANG L L. Scour prevention measures of oil and gas pipelines crossing small rivers in Russia[J]. Oil & Gas Storage and Transportation, 2018, 37(7): 836-840. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201807019.htm
    [11]
    王海兰, 马廷霞, 徐洪敏, 赵潇, 于家付. 输油悬空管道洪水冲刷作用下的安全评价[J]. 石油机械, 2015, 43(1): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201501028.htm

    WANG H L, MA T X, XU H M, ZHAO X, YU J F. Safety evaluation for suspended oil pipelines under flood scouring[J]. China Petroleum Machinery, 2015, 43(1): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201501028.htm
    [12]
    刘旭. 洪水灾害下悬空管道的安全评估方法研究[D]. 抚顺: 辽宁石油化工大学, 2019.

    LIU X. Research on safety assessment method of pipeline free span under flood disaster[D]. Fushun: Liaoning Petrochemical University, 2019.
    [13]
    唐华辉, 田晨. 河流油气管道动应力特性及悬跨安全性分析[J]. 力学与实践, 2016, 38(6): 631-635. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201606006.htm

    TANG H H, TIAN C. Dynamic stress analysis and suspended span management for the crossing river oil and gas pipeline[J]. Mechanics in Engineering, 2016, 38(6): 631-635. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201606006.htm
    [14]
    任志鹏, 滕飞, 李明涛, 冯浩. 河流穿越管道悬空段稳管方法综述[J]. 石油天然气学报, 2020, 42(3): 327-336.

    REN Z P, TENG F, LI M T, FENG H. A summary of the stabilizing method of the suspended section for river crossing pipeline[J]. Journal of Oil and Gas Technology, 2020, 42(3): 327-336.
    [15]
    郭守德, 王强, 林影, 姜昌亮, 王珀. 伊洛瓦底江管道穿越处风险评价及治理[J]. 油气储运, 2019, 38(8): 949-954. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201908017.htm

    GUO S D, WANG Q, LIN Y, JIANG C L, WANG P. Risk assessment and treatment of the Irrawaddy River pipeline crossing[J]. Oil & Gas Storage and Transportation, 2019, 38(8): 949-954. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201908017.htm
    [16]
    孙国民, 胡春红. 海底管道坐底稳定性分析方法研究[C]. 呼和浩特: 第十四届中国海洋(岸)工程学术讨论会, 2009: 336-340.

    SUN G M, HU C H. Research on bottom stability analysis method of submarine pipe[C]. Huhhot: The 14th China Ocean (Shore) Engineering Symposium, 2009: 336-340.
    [17]
    王博雅, 康庄, 宋儒鑫, 曹先凡, 刘振纹. 大坡度海底管道强度分析[J]. 海洋工程装备与技术, 2015, 2(4): 264-269. https://www.cnki.com.cn/Article/CJFDTOTAL-HYZB201504012.htm

    WANG B Y, KANG Z, SONG R X, CAO X F, LIU Z W. Strength analysis of submarine pipeline on large slope[J]. Ocean Engineering Equipment and Technology, 2015, 2(4): 264-269. https://www.cnki.com.cn/Article/CJFDTOTAL-HYZB201504012.htm
    [18]
    VEDELD K, SOLLUND H, HELLESLAND J. Free vibrations of free spanning offshore pipelines[J]. Engineering Structures, 2013, 56: 68-82.
    [19]
    FYRILEIV O, MØRK K, CHEZHIAN M. Experiences using DNV-RP-F105 in assessment of free spanning pipelines[C]. Halkidiki: ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering, 2008: OMAE2005-67453.
    [20]
    赵党, 郝双户, 何宁. 海底管道稳定性分析[J]. 舰船科学技术, 2013, 35(5): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201305028.htm

    ZHAO D, HAO S H, HE N. Survey on on-bottom stability design of submarine pipelines[J]. Ship Science and Technology, 2013, 35(5): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201305028.htm
    [21]
    曾攀. 有限元基础教程[M]. 北京: 高等教育出版社, 2009: 44-46.

    ZENG P. Fundamentals of finite element analysis[M]. Beijing: Higher Education Press, 2009: 44-46.
    [22]
    王飞, 李效民, 马芳俊, 郭海燕. 向量式有限元法在管土相互作用中的应用[J]. 船舶力学, 2019, 23(4): 467-475. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201904011.htm

    WANG F, LI X M, MA F J, GUO H Y. Application of vector form intrinsic finite element method on riser/seafloor interaction[J]. Journal of Ship Mechanics, 2019, 23(4): 467-475. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201904011.htm
    [23]
    许文兵, 王法承, 贾宏伟, 杨元平. 往复流作用下海底管线冲刷模拟研究[J]. 泥沙研究, 2017, 6(3): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ201703007.htm

    XU W B, WANG F C, JIA H W, YANG Y P. Numerical study on scour around offshore pipeline in reciprocating tidal flow[J]. Journal of Sediment Research, 2017, 6(3): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ201703007.htm
    [24]
    李秀锋, 冯现洪. 基于疲劳寿命的海底管道自由悬跨分析[J]. 海洋工程装备与技术, 2015, 2(3): 196-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HYZB201503012.htm

    LI X F, FENG X H. Subsea pipeline span analysis based on fatigue life[J]. Ocean Engineering Equipment and Technology, 2015, 2(3): 196-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HYZB201503012.htm
    [25]
    葛素娟, 李静斌. 简支梁横向振动固有频率的误差分析[J]. 郑州大学学报(工学版), 2010, 31(5): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY201005013.htm

    GE S J, LI J B. Error analysis of transverse vibration natural frequency of simply supported beam[J]. Journal of Zhengzhou University (Engineering Science), 2010, 31(5): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY201005013.htm
    [26]
    HOBBS R E. Influence of structural boundary conditions on pipeline free span dynamics[C]. Tokyo: In Proceedings of the 5th International Offshore Mechanics and Arctic Engineering (OMAE) Symposium, 1986: 45-52.
    [27]
    徐万海, 谢武德, 彭碧瑶, 高喜峰. 考虑管土作用悬跨管道纯顺流向涡激振动研究[J]. 哈尔滨工程大学学报, 2016, 37(9): 1184-1189. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201609004.htm

    XU W H, XIE W D, PENG B Y, GAO X F. Study on pure in-line vortex-induced vibrations of free-spanning pipeline considering pipe-soil interaction at shoulders[J]. Journal of Harbin Engineering University, 2016, 37(9): 1184-1189. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201609004.htm
    [28]
    黄小光, 韩忠英. 海底管道疲劳损伤与疲劳寿命的可靠性计算[J]. 油气储运, 2010, 29(11): 827-831. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201011011.htm

    HUANG X G, HAN Z Y. Reliability calculation of fatigue damage and fatigue life of submarine pipeline[J]. Oil & Gas Storage and Transportation, 2010, 29(11): 827-831. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201011011.htm

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return