JIANG Qingmei, ZHANG Xiaoqiang, YU Zhifeng. Recheck on reliability of Heihe-Changling Section of China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(12): 1350-1356. DOI: 10.6047/j.issn.1000-8241.2020.12.005
Citation: JIANG Qingmei, ZHANG Xiaoqiang, YU Zhifeng. Recheck on reliability of Heihe-Changling Section of China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(12): 1350-1356. DOI: 10.6047/j.issn.1000-8241.2020.12.005

Recheck on reliability of Heihe-Changling Section of China-Russia Eastern Gas Pipeline

More Information
  • Received Date: March 08, 2020
  • Revised Date: September 15, 2020
  • Available Online: August 20, 2023
  • In the reliability assessment of the Heihe-Changling Section of China-Russia Eastern Gas Pipeline at the preliminarydesign stage, the basic data of the pipeline sourced from trial-produced steel pipes, while the girth weld data referenced thewelding process adaptability assessment results and previous engineering statistical data. After the pipeline commissioning, itis necessary to check the performance difference between the batch supply steel pipes and the trial-produced steel pipes andthe impact on the service reliability of the pipeline, as well as the impact of automatic welding on the reliability of the pipeline.Based on the new basic parameters, the performance parameters of trial-produced steel pipes and batch-supplied steel pipes werecompared, the mechanical parameters and defect data of automatic welding girth welds were analyzed, and the service reliabilityof the pipeline was rechecked with the latest data. The results show that the mechanical properties of trial-produced steel pipesare different from the batch-supplied steel pipes, but all of them meet the standard requirements. Automatic welding improvesthe quality of girth welds, and the weld performance indexes are all higher than the standard requirements. The fluctuation ofsteel pipe performance directly affects the failure probability value of the pipeline section. With the increase of service life, thefailure probability of the pipeline caused by external corrosion will be gradually increased, but within the 30-year service life, the pipeline is estimated to meet the service reliability requirements according to the current design, materials, construction, operation and maintenance standards.
  • [1]
    姜昌亮. 中俄东线天然气管道工程管理与技术创新[J]. 油气储运, 2020, 39(2): 121-129. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202002001.htm

    JIANG C L. Management and technological innovation in China-Russia Eastern Gas Pipeline Project[J]. Oil & Gas Storage and Transportation, 2020, 39(2): 121-129. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202002001.htm
    [2]
    程玉峰. 保障中俄东线天然气管道长期安全运行的若干技术思考[J]. 油气储运, 2020, 39(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202001001.htm

    CHENG F. Technical insights into the long-term integrity and sustainability of China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202001001.htm
    [3]
    周亚薇, 张振永. 中俄东线天然气管道环焊缝断裂韧性设计[J]. 油气储运, 2018, 37(10): 1174-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201810016.htm

    ZHOU Y W, ZHANG Z Y. The design for the fracture toughness of girth weld in China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2018, 37(10): 1174-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201810016.htm
    [4]
    帅健. 油气管道可靠性的极限状态设计方法[J]. 石油规划设计, 2002, 13(1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGH200201006.htm

    SHUAI J. The reliability used limit state design method[J]. Petroleum Planning & Engineering, 2002, 13(1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGH200201006.htm
    [5]
    DONG Y, YU D. Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis[J]. Journal of Loss Prevention in the Process Industries, 2005, 18(2): 83-88. doi: 10.1016/j.jlp.2004.12.003
    [6]
    温凯, 张文伟, 宫敬, 李恒东, 张振永, 赵博渊. 天然气管道可靠性的计算方法[J]. 油气储运, 2014, 33(7): 729-733. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201407009.htm

    WEN K, ZHANG W W, GONG J, LI H D, ZHANG Z Y, ZHAO B Y. Computation of gas pipeline reliability[J]. Oil & Gas Storage and Transportation, 2014, 33(7): 729-733. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201407009.htm
    [7]
    钱成文, 崔健. 天然气管道的运行可靠性评价技术[J]. 油气储运, 2005, 24(增刊1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201408002.htm

    QIAN C W, CUI J. Operational reliability evaluation of natural gas pipeline[J]. Oil & Gas Storage and Transportation, 2005, 24(S1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201408002.htm
    [8]
    SHAHANI K, MOHAMMAD A, WANG H. Improving safety through engineering assessments for change in location class[C]. Calgary: 11th International Pipeline Conference, 2016: IPC 2016-64635.
    [9]
    王馨艺, 王淼, 冯瑶, 张宗杰. 基于事故工况下的天然气干线管道供气可靠性评价[J]. 油气储运, 2019, 38(4): 392-397. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201904006.htm

    WANG X Y, WANG M, FENG Y, ZHANG Z J. Evaluation on the gas supply reliability of gas trunk pipelines based on accident condition[J]. Oil & Gas Storage and Transportation, 2019, 38(4): 392-397. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201904006.htm
    [10]
    李明菲, 周利剑, 郑洪龙, 杨辉, 雷铮强, 薛鲁宁, 等. 我国天然气管网系统可靠性评价技术现状[J]. 油气储运, 2015, 34(5): 464-468. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201505003.htm

    LI M F, ZHOU L J, ZHENG H L, YANG H, LEI Z Q, XUE L N, et al. Current reliability assessment techniques for natural gas pipeline networks in China[J]. Oil & Gas Storage and Transportation, 2015, 34(5): 464-468. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201505003.htm
    [11]
    范慕炜, 宫敬, 伍阳, 邓涛. 天然气管网可靠性评价方法研究现状[J]. 油气储运, 2015, 34(4): 343-348. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201504001.htm

    FAN M W, GONG J, WU Y, DENG T. Research status of reliability evaluation of gas pipeline network[J]. Oil & Gas Storage and Transportation, 2015, 34(4): 343-348. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201504001.htm
    [12]
    张宗杰, 谢青青, 文江波, 王喜. 干线天然气管道运行可靠性评价方法[J]. 油气储运, 2014, 33(8): 807-812. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201408002.htm

    ZHANG Z J, XIE Q Q, WEN J B, WANG X. Reliability evaluation method for gas trunk line[J]. Oil & Gas Storage and Transportation, 2014, 33(8): 807-812. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201408002.htm
    [13]
    赵新伟, 池强, 张伟卫, 杨峰平, 许春江. 管径1 422 mm的X80焊管断裂韧性指标[J]. 油气储运, 2017, 36(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202002005.htm

    ZHAO X W, CHI Q, ZHANG W W, YANG F P, XU C J. Fracture toughness indicators of OD 1 422 mm X80 welded steel pipe[J]. Oil & Gas Storage and Transportation, 2017, 36(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202002005.htm
    [14]
    吉玲康, 霍春勇, 李鹤. 我国高压长输天然气管道的断裂控制[J]. 石油管材与仪器, 2016, 2(6): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYQ201606001.htm

    JI L K, HUO C Y, LI H. Fracture control for high pressure natural gas pipeline with long distance in China[J]. Petroleum Instruments, 2016, 2(6): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYQ201606001.htm
    [15]
    霍春勇, 李鹤, 张伟卫, 杨坤, 池强, 马秋荣. X80钢级1 422 mm大口径管道断裂控制技术[J]. 天然气工业, 2016, 36(6): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201606016.htm

    HUO C Y, LI H, ZHANG W W, YANG K, CHI Q, MA Q R. Fracture control technology for the X80 large OD 1 422 mm line pipes[J]. Natural Gas Industry, 2016, 36(6): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201606016.htm
    [16]
    张伟卫, 李鹤, 池强, 赵新伟, 霍春勇, 齐丽华, 等. 外径1 422 mm的X80钢级管材技术条件研究及产品开发[J]. 天然气工业, 2016, 36(6): 84-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201606018.htm

    ZHANG W W, LI H, CHI Q, ZHAO X W, HUO C Y, QI L H, et al. Technical specifications of the X80 large OD 1 422 mm line pipes and the corresponding product development[J]. Natural Gas Industry, 2016, 36(6): 84-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201606018.htm
    [17]
    WEN K, GONG J, ZHAO B Y, ZHANG W W. The reliability-based assessment of an in-service X80 natural gas pipeline in China[C]. Calgary: 10th International Pipeline Conference, 2014: V004T13A007.
    [18]
    ZHANG S W, ZHOU W X. An efficient methodology for the reliability analysis of corroding pipelines[C]. Calgary: 9th International Pipeline Conference, 2012: 90482.
    [19]
    GONG C Q, ZHOU W X. First-order reliability method-based system reliability analyses of corroding pipelines considering multiple defects and failure modes[J]. Structure and Infrastructure Engineering, 2017, 13(11): 1451-1461.
    [20]
    帅义, 帅健, 刘朝阳. 腐蚀管道可靠性评价方法研究[J]. 石油科学通报, 2017, 2(2): 288-297. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201702012.htm

    SHUAI Y, SHUANG J, LIU Z Y. Research on the reliability methods of corroded pipeline[J]. Petroleum Science Bulletin, 2017, 2(2): 288-297. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201702012.htm
    [21]
    孙春梅, 李琴, 黄志强, 汤海平, 肖祥. 基于Monte Carlo方法的腐蚀管道可靠性分析[J]. 油气储运, 2015, 34(8): 811-816. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201508003.htm

    SUN C M, LI Q, HUANG Z Q, TANG H P, XIAO X. Reliability analysis of corroded pipelines based on Monte Carlo method[J]. Oil & Gas Storage and Transportation, 2015, 34(8): 811-816. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201508003.htm
    [22]
    张强, 杨玉锋, 郑洪龙, 程万洲. 第三方挖掘作用下管道可靠性评价研究[J]. 中国安全生产科学技术, 2017, 13(2): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201702025.htm

    ZHANG Q, YANG Y F, ZHENG H L, CHENG W Z. Study on reliability evaluation of pipeline under the effect of third-party excavation[J]. Journal of Safety Science and Technology, 2017, 13(2): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201702025.htm
    [23]
    罗更生, 周煜. 含裂纹油气管道可靠性评定方法及敏感性分析[J]. 石油学报, 2011, 32(6): 1083-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106026.htm

    LUO G S, ZHOU Y. A reliability assessment method of crack-containing oil-gas pipelines and its sensitivity analysis[J]. Acta Petrolei Sinica, 2011, 32(6): 1083-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106026.htm
    [24]
    CALEYO F, GONZAL J L, HALLEN J M. A study on the reliability assessment methodology for pipelines with active corrosion defects[J]. International Journal of Pressure Vessels and Piping, 2002, 79(1): 77-86.

Catalog

    Article views (1) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return