GAO Qiuying, GUAN Shanfeng, GONG Rubo, LIU Qiang, MAO Leiting, TIAN Xiankai. Experiment on sulfate-reducing bacteria influenced corrosion of carbon steels under corrosive working conditions in Tahe Oilfield[J]. Oil & Gas Storage and Transportation, 2020, 39(10): 1142-1147. DOI: 10.6047/j.issn.1000-8241.2020.10.009
Citation: GAO Qiuying, GUAN Shanfeng, GONG Rubo, LIU Qiang, MAO Leiting, TIAN Xiankai. Experiment on sulfate-reducing bacteria influenced corrosion of carbon steels under corrosive working conditions in Tahe Oilfield[J]. Oil & Gas Storage and Transportation, 2020, 39(10): 1142-1147. DOI: 10.6047/j.issn.1000-8241.2020.10.009

Experiment on sulfate-reducing bacteria influenced corrosion of carbon steels under corrosive working conditions in Tahe Oilfield

More Information
  • Received Date: October 16, 2018
  • Revised Date: July 13, 2020
  • Available Online: August 20, 2023
  • In order to study the influence of sulfate-reducing bacteria(SRB) on the corrosion behavior of carbon steel under the corrosive working conditions in Tahe Oilfield, the tests were carried out by simulating the corrosive working conditions with a high temperature and high pressure autoclave to measure the bacteria counts, the corrosion morphology and pitting depth was analyzed with scanning electron microscope and laser scanning confocal microscope, and the corrosion rate was calculated using a weight loss method. The study found out that, under the condition of high salinity(the mass concentration of Cl- is 11.87×104 mg/L), the temperature rose from 40 ℃ to 80 ℃, and the bacteria counts reduced from 110 cells/mL to 25 cells/mL. The maximum pitting rate, 5.475 mm/a, occurred at 40 ℃, and at 60 ℃, the bacteria activity decreased and the pitting rate decreased at first and then rose with the salinity increase. Under 60 ℃ condition with high salinity, changing the partial pressure of H2S had no obvious effect on bacteria count in solution, but the pitting rate and uniform corrosion rate decreased. The study results indicate that SRB can survive under the extreme conditions of Tahe Oilfield, temperature rise and increasing of salinity may result in the decreasing of SRB concentration, but partial pressure of H2S has little influence on SRB concentration. Temperature is an important factor affecting SRB corrosion. The higher the temperature is, the slighter the pitting caused by SRB is. Additionally, increasing of salinity may affect the activity of bacteria, further weakening the pitting due to bacteria.
  • [1]
    卢智慧, 何雪芹, 何昶. 塔河油田集输管道腐蚀因素及防腐措施[J]. 油田地面工程, 2015, 34(7): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HGBJ202217012.htm

    LU Z H, HE X Q, HE C. Corrosion factors and anti-corrosion measures of gathering and transportation pipelines in Tahe Oilfield[J]. Oil-Gas Field Surface Engineering, 2015, 34(7): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HGBJ202217012.htm
    [2]
    李占坤, 孙彪, 王喜乐, 王国瑞, 宝音. 塔河油田油气集输管网腐蚀现状及防腐蚀技术[J]. 腐蚀与防护, 2015, 36(3): 240-244, 299. https://www.cnki.com.cn/Article/CJFDTOTAL-FSYF201503011.htm

    LI Z K, SUN B, WANG X L, WANG G R, BAO Y. Corrsion status situation and anti-corrosion technology of oil gas gathering and distribution pipelines in Tahe Oilfield[J]. Corrosion and Protection, 2015, 36(3): 240-244, 299. https://www.cnki.com.cn/Article/CJFDTOTAL-FSYF201503011.htm
    [3]
    杨新勇, 蒋勇, 杨玉琴, 杨映达, 郭秀东. 塔河油田输油管道典型腐蚀与对策[J]. 全面腐蚀控制, 2012, 26(10): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-QMFK201210020.htm

    YANG X Y, JIANG Y, YANG Y Q, YANG Y D, GUO X D. Tahe Oilfield pipeline typical corrosion and countermeasures[J]. Total Corrosion Control, 2012, 26(10): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-QMFK201210020.htm
    [4]
    叶帆, 杨伟. 塔河油田集输管道腐蚀与防腐技术[J]. 油气储运, 2010, 29(5): 354-358, 362. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201005010.htm

    YE F, YANG W. Corrosion and corrosion control of gathering pipelines in Tahe Oilfield[J]. Oil & Gas Storage and Transportation, 2010, 29(5): 354-358, 362. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201005010.htm
    [5]
    张菁, 赵毅, 王晓慧, 于延钊. 塔河油田地面集输管网碳钢管线材质实验研究[J]. 油气田地面工程, 2017, 36(6): 22-24, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQTD201706008.htm

    ZHANG J, ZHAO Y, WANG X H, YU Y Z. Experimental study on the carbon steel pipeline of surface gathering and transportation network in Tahe Oilfield[J]. Oil-Gas Field Surface Engineering, 2017, 36(6): 22-24, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQTD201706008.htm
    [6]
    战征, 蔡奇峰, 汤晟, 董刚, 汤天遴. 塔河油田腐蚀原因分析与防护对策[J]. 腐蚀科学与防护技术, 2008, 20(2): 152-154. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ200802017.htm

    ZHAN Z, GAT Q F, TANG S, DONG G, TANG T L. A corrosion survey and relevant measures for corrsion in Tahe Oilfield[J]. Corrosion Science and Protection Technology, 2008, 20(2): 152-154. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ200802017.htm
    [7]
    陈迪. 塔河油田原油集输管道弯管开裂原因[J]. 油气储运, 2011, 30(5): 396-399. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201105024.htm

    CHEN D. Bended pipe cracking reason of gathering pipeline in Tahe Oilfield[J]. Oil & Gas Storage and Transportation, 2011, 30(5): 396-399. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201105024.htm
    [8]
    马丽萍, 王永清, 赵素惠. CO2和H2S在井下环境中共存时对油管钢的腐蚀[J]. 西部探矿工程, 2006(11): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200611026.htm

    MA L P, WANG Y Q, ZHAO S H. Coexistence of CO2 and H2S corroding tubing under down hole environment[J]. Western Exploration Engineering, 2006(11): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200611026.htm
    [9]
    梁光川, 马骐, 叶帆, 周军, 宋泞杉. 塔河9区高含H2S凝析气藏地面集输管道防腐蚀选材与内涂层防腐蚀考察[J]. 材料保护, 2018, 51(1): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201801026.htm

    LIANG G C, MA Q, YE F, ZHOU J, SONG N S. Anti-corrosion material selection and undercoat investigation for gas gathering pipelines in condensate reservoir with high-concentration H2S in the 9th district of Tahe Oilfield[J]. Journal of Materials Protection, 2018, 51(1): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201801026.htm
    [10]
    刘玉秀, 战广深, 牛永强, 李甲辉. 硫酸盐还原菌(SRB)对碳钢管道腐蚀的影响[J]. 全面腐蚀控制, 2002, 16(1): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-QMFK200201008.htm

    LIU Y X, ZHAN G S, NIU Y Q, LI J H. The influence of sulfate reducing bacteria on carbon steel pipe corrosion[J]. Total Corrosion Gontrol, 2002, 16(1): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-QMFK200201008.htm
    [11]
    JAVAHERDASHTI R. Microbiologically influenced corrosion—an engineering insight[J]. British Corrosion Journal, 2008, 29(3): 181-182.
    [12]
    张小里, 陈志昕, 刘海洪, 郭生武, 陈开勋. 环境因素对硫酸盐还原菌生长的影响[J]. 中国腐蚀与防护学报, 2000, 20(4): 224-229. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF200004005.htm

    ZHANG X L, GHEN Z X, LIU H H, GUO S W, CHEN K X. Effects of environmental factors on the growth of sulfatereducing bacteria[J]. Journal of Chinese Socicty for Corrosion and Protection, 2000, 20(4): 221-229. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF200004005.htm
    [13]
    赵海, 李安明, 万波, 刘克鑫. 一株中度嗜盐硫酸盐还原菌的分离及生理特性研究[J]. 应用与环境生物学报, 1995, 1(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS501.009.htm

    ZHAO H, LI A M, WAN B, LIU K X. Isolation and physiology of a moderately halophilic sulfate reducing bacteria[J]. Journal of Applied and Environmental Biology, 1995, 1(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS501.009.htm
    [14]
    于勇, 王元春, 樊学华, 杨黎晖, 李言涛. 硫酸盐还原菌作用下Cl-浓度对20号钢在高矿化度油田卤水中腐蚀行为的影响[J]. 腐蚀与防护, 2015, 36(1): 45-53. https://www.cnki.com.cn/Article/CJFDTOTAL-FSYF201501010.htm

    YU Y, WANG Y C, FAN X H, YANG L H, LI Y T. Influence of chloride concentration on corrosion behavior of 20# steel in high salintity oilfield brine containing sulphate-reducing bacteria media[J]. Corrosion & Protection, 2015, 36(1): 45-53. https://www.cnki.com.cn/Article/CJFDTOTAL-FSYF201501010.htm
    [15]
    康群, 罗永明, 赵世玉, 易绍金. 江汉油区硫酸盐还原菌的生长规律研究[J]. 江汉石油职工大学学报, 2005, 18(4): 79-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZD200504026.htm

    KANG Q, LUO Y M, ZHAO Y, YI S J. Researth of growing laws of sulfate reducing bacteria in Jianghan Oil Region[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2005, 18(4): 79-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZD200504026.htm
    [16]
    吕红梅, 王彪, 朱霞. 油田硫酸盐还原菌的危害及防治[J]. 石油化工腐蚀与防护, 2013, 30(6): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SWFS201306011.htm

    LYU H M, WANG B, ZHU X. Harm of sulfate-reducing bacteria in oil field and prevention[J]. Petrochcmical Corrosion and Protection, 2013, 30(6): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SWFS201306011.htm
    [17]
    THAUER R K, STACKEBRANDT E, HAMILTON W A. Sulphate-reducing bacteria: environmental and engineered systems[M]. Cambridge: Cambridge University Press, 2007: 1-552.
    [18]
    苑海涛, 弓爱君, 高瑾, 李成, 王子佳, 刘明娜. 硫酸盐还原菌的微生物腐蚀及其防护研究进展[J]. 化学与生物工程, 2009, 26(1): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHG200901004.htm

    YUAN H T, GONG A J, GAO J, LI G, WANG Z J, LIU M N. Review on microbiologically influenced corrosion by sulfatereducing bacteria and the protective measures[J]. Chemistry & Bioengineering, 2009, 26(1): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHG200901004.htm
    [19]
    LI Y G, XU D K, GHEN C F, LI X G, JIA R, ZHANG D W, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review[J]. Journal of Materials Science & Technology, 2018, 34(10): 1713-1718.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return