LI Zhenbei, BAI Gangsheng, DANG Na, YANG Jing, YU Chao. Structural design and sealing performance of cup in diameter-variable pipeline detector[J]. Oil & Gas Storage and Transportation, 2020, 39(5): 576-581. DOI: 10.6047/j.issn.1000-8241.2020.05.014
Citation: LI Zhenbei, BAI Gangsheng, DANG Na, YANG Jing, YU Chao. Structural design and sealing performance of cup in diameter-variable pipeline detector[J]. Oil & Gas Storage and Transportation, 2020, 39(5): 576-581. DOI: 10.6047/j.issn.1000-8241.2020.05.014

Structural design and sealing performance of cup in diameter-variable pipeline detector

More Information
  • Received Date: November 27, 2017
  • Revised Date: March 09, 2020
  • Available Online: August 20, 2023
  • The diameter-variable oil and gas pipeline detector is a kind of pipeline detection device that can simultaneously conduct in-service detection on pipelines with different diameters within the interval of a pig launching and receiving station.The advantages lie in its strong passing capacity, wide application and cost saving.Through the research on the structural design and sealing performance of the diameter-variable cup for diameter-variable detection, a set of 40-48 in(1 in=25.4 cm) diameter-variable cup structures suitable for oil and gas media were proposed.The rationality and feasibility of the structural scheme of the diameter-variable cup structure were verified by finite element simulation analysis, combined with the methods of diameter-variable pipeline detector traction and gas sealing driving test.The actual industrial application on site shows that the structural design and sealing performance of the diameter-variable cup meet the design index and the field's application requirements.The research has laid a solid technical foundation, for breaking the long-term monopoly of foreign countries on diameter-variable pigging and detection technology, and for the early realization of serialized industrial field application of selfdeveloped diameter-variable pigging and detection device in China.
  • [1]
    洪险峰, 姜晓红, 付桂英, 郑景娜, 肖英杰. 一种新型投产前管道智能测径检测器[J]. 油气储运, 2014, 33(1): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201401014.htm

    HONG X F, JIANG X H, FU G Y, ZHENG J N, XIAO Y J. A new smart calibre detector for pre-commissioning pipeline[J]. Oil & Gas Storage and Transportation, 2014, 33(1): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201401014.htm
    [2]
    白港生. 新型管道测径清管器[J]. 化工设备与管道, 2008, 45(5): 58-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSB200805015.htm

    BAI G S. New cleaning and diameter measuring instrument[J]. Process Equipment and Piping, 2008, 45(5): 58-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSB200805015.htm
    [3]
    QUARINI G, AINSLIE E, HERBERT M, DEANS T, ASH D, RHYS D, et al. Investigation and development of an innovative pigging technique for the watersupply industry[J]. Proc IME Part E, 2010, 224(2): 79-89.
    [4]
    HOSSEINALIPOUR S M, KHALILI A Z, SALIMI A. Numerical simulation of pig motion through gas pipeline[C]. Gold Coast: Australasian Fluid Mechanics Conference, 2007: 971-975.
    [5]
    BOTROS K K, GOLSHAN H. Field validation of a dynamic model for an MFL ILI tool in gas pipelines[C]. Calgary: 8th International Pipeline Conference, 2010: 325-336.
    [6]
    MIRSHAMSI M, RAFEEYAN M. Dynamic analysis of pig through two and three dimensional gas pipeline[J]. J Appl Fluid Mech, 2015, 8(1): 43-54.
    [7]
    MIRSHAMSI M, RAFEEYAN M. Dynamic analysis and simulation of long pig in gas pipeline[J]. J Nat Gas Sci Eng, 2015, 23: 294-303. doi: 10.1016/j.jngse.2015.02.004
    [8]
    SOLGHAR A A, DAVOUDIAN M. Analysis of transient PIG motion in natural gas pipeline[J]. Mech Industry, 2013, 13(5): 293-300.
    [9]
    王贝. 清管过程中积蜡层切削模拟及摩擦学特性研究[D]. 北京: 中国石油大学(北京), 2014: 28-35.

    WANG B. The cutting simulation of the wax-deposit and tribological characteristics in the process of pigging[D]. Beijing: China University of Petroleum(Beijing), 2014: 28-35.
    [10]
    李国华, 蒲家宁, 杨玉利. 柔轴组合式清管器的结构研究与设计[J]. 油气储运, 1995, 14(4): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY199504010.htm

    LI G H, PU J N, YANG Y L. Structural study and design of build-up pig with flexible shaft[J]. Oil & Gas Storage and Transportation, 1995, 14(4): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY199504010.htm
    [11]
    谭桂斌, 王德国. 长输管道智能机器人摩擦学系统研究进展[J]. 油气储运, 2016, 35(6): 583-590. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201606005.htm

    TAN G B, WANG D G. Review on the tribological system of intelligent robots for long-distance pipelines[J]. Oil & Gas Storage and Transportation, 2016, 35(6): 583-590. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201606005.htm
    [12]
    张行, 王焱, 张仕民, 张康. 清管器密封皮碗力学特性的有限元分析[J]. 油气储运, 2015, 34(11): 1225-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201511019.htm

    ZHANG H, WANG Y, ZHANG S M, ZHANG K. Finite-element analysis on mechanical properties of sealing disc for pig[J]. Oil & Gas Storage and Transportation, 2015, 34(11): 1225-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201511019.htm
    [13]
    谷志宇. 天然气管道内涂层磨损研究[J]. 油气储运, 2012, 31(6): 455-456, 460. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201206021.htm

    GU Z Y. Study on wear of internal coating of gas pipeline[J]. Oil & Gas Storage and Transportation, 2012, 31(6): 455-456, 460. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201206021.htm
    [14]
    谭桂斌, 刘书海, 王德国, 张仕民. 油气管道腐蚀缺陷内检测与清管时软接触区的含蜡油迁移规律研究[C]. 宜昌: 全国青年摩擦学学术会议, 2014: 669-679.

    TAN G B, LIU S H, WANG D G, ZHANG S M. Transporting model of wax-oil gel in rough soft contact during pipeline pigging and inspection process[C]. Yichang: National Youth Conference on Tribology, 2014: 669-679.
    [15]
    TAN G B, LIU S H, WANG D G, ZHANG K. Spatio-temporal structure in wax-oil gel scraping at a soft tribological contact[J]. Tribology International, 2015, 88(8): 236-251.
    [16]
    谭桂斌, 朱霄霄, 张仕民, 石利云. 天然气管道调速清管器研究进展[J]. 油气储运, 2011, 30(6): 411-416. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201106003.htm

    TAN G B, ZHU X X, ZHANG S M, SHI L Y. Study progress in variable speed pig for natural gas pipeline[J]. Oil & Gas Storage and Transportation, 2011, 30(6): 411-416. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201106003.htm
    [17]
    ZHANG H, ZHANG S M, LIU S H, ZHANG S M, LIANG H. Measurement and analysis of friction and dynamic characteristics of PIG's sealing disc passing through girth weld in oil and gas pipeline[J]. Measurement, 2015, 64: 112-122.
    [18]
    李晓龙, 张仕民, 焦泉, 张康, 王昊. 油气管道通径检测器重心偏移的误差修正算法[J]. 油气储运, 2015, 34(6): 611-615. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201506011.htm

    LI X L, ZHANG S M, JIAO Q, ZHANG K, WANG H. Error correction algorithm barycenter offset of caliper tool of oil and gas pipelines[J]. Oil & Gas Storage and Transportation, 2015, 34(6): 611-615. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201506011.htm
    [19]
    王会坤, 罗京新, 戚菁菁. 川气东送管道干线清管实践[J]. 油气储运, 2015, 34(4): 408-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201504014.htm

    WANG H K, LUO J X, QI J J. Pigging operation of the Sichuan-East Gas Transmission Pipeline[J]. Oil & Gas Storage and Transportation, 2015, 34(4): 408-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201504014.htm
    [20]
    朱建平. 提高皮碗清管器工作效能的技术改进措施[J]. 油气储运, 2009, 28(12): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY200912021.htm

    ZHU J P. Technical improvement measures to increase employment effectiveness of rubber-cup pigs[J]. Oil & Gas Storage and Transportation, 2009, 28(12): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY200912021.htm
  • Related Articles

    [1]LIU Xiaoqian, LI Yuxing, LI Shunli, YUAN Zhu. Liquid holdup distribution laws and critical inclination angle model of undulating wet gas pipelines[J]. Oil & Gas Storage and Transportation, 2017, 36(2): 177-184. DOI: 10.6047/j.issn.1000-8241.2017.02.009
    [2]Tao Weifang, Liu Xu, Wang Qijing. Study on Loss Constitution and Change Law of Underground Gas Storage[J]. Oil & Gas Storage and Transportation, 2010, 29(4): 258-259. DOI: 10.6047/j.issn.1000-8241.2010.04.005
    [3]NI Lingying. Study on Flow Law of Hydraulic Pipe Cleaning Technology[J]. Oil & Gas Storage and Transportation, 2008, 27(8): 27-27, 38. DOI: 10.6047/j.issn.1000-8241.2008.08.008
    [4]HE Chengcai. Flow Law on Turbulent-Laminar Stratified Flow in Aerating Pipes[J]. Oil & Gas Storage and Transportation, 2005, 24(7): 41-45. DOI: 10.6047/j.issn.1000-8241.2005.07.013
    [5]LIANG Xizhang. On the Basic Laws of Pipeline Construction[J]. Oil & Gas Storage and Transportation, 2003, 22(12): 1-9. DOI: 10.6047/j.issn.1000-8241.2003.12.001
    [6]HE Chengcai. Flowing Laws on Eccentric Annular Pipe Flow[J]. Oil & Gas Storage and Transportation, 2002, 21(11): 25-28. DOI: 10.6047/j.issn.1000-8241.2002.11.006
    [7]Chen Jialiang, Wei Zhaosheng, Chen Taoping. Pressure Drop Calculation of Two Phase Horizontal Flow of Gas-Power Law Liquid[J]. Oil & Gas Storage and Transportation, 1994, 13(3): 34-38,46.
    [8]Chen Jinghui, Zhang Longjiang. Prediction in Plug Flow Pressure Drop of Gas——Non—Newtonian Liquid Being Transported in Pipelines[J]. Oil & Gas Storage and Transportation, 1994, 13(2): 15-18.
    [9]Yang Baojun, . Research on Practical Ratio of Gas Content for the Two-phase Flow of Gas and Power-law Liquid in Horizontal Pipe[J]. Oil & Gas Storage and Transportation, 1991, 10(1): 1-6, 26.
    [10]Zhang Longjiang, . Summing-Up of the Two Phase Flow, Gas and Non-Newtonian Fluid[J]. Oil & Gas Storage and Transportation, 1988, 7(3): 1-7, 16.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return