DONG Longfei, LI Yuxing, HAN Hui. Numerical simulation on the convective heat transfer at the shell pass of spiral-wound LNG heat exchanger[J]. Oil & Gas Storage and Transportation, 2019, 38(6): 697-703. DOI: 10.6047/j.issn.1000-8241.2019.06.016
Citation: DONG Longfei, LI Yuxing, HAN Hui. Numerical simulation on the convective heat transfer at the shell pass of spiral-wound LNG heat exchanger[J]. Oil & Gas Storage and Transportation, 2019, 38(6): 697-703. DOI: 10.6047/j.issn.1000-8241.2019.06.016

Numerical simulation on the convective heat transfer at the shell pass of spiral-wound LNG heat exchanger

More Information
  • Received Date: July 02, 2017
  • Revised Date: February 24, 2019
  • Available Online: August 20, 2023
  • Spiral-wound heat exchanger is the key equipment for the liquefaction of natural gas, and its heat transfer performance has a significant effect on the level of liquefaction process. In this paper, the convective heat transfer of singlephase mixed refrigerant at the shell pass of spiral-wound LNG heat exchanger was numerically simulated by Fluent software based on the structure and features of spiral-wound heat exchanger. It is indicated that the diameter of heat exchange tube is one of the important factors influencing the shell-side heat transfer. The shell-side heat transfer coefficient and the shellside refrigerant pressure drop increase with the increase of the tube diameter and the mass flow of shell-side refrigerant. The deviation between the experimental value and the simulation result is lower than 20%, indicating that both of them are more matched. In conclusion, this newly established numerical simulation model is feasible for studying the heat transfer performance of spiral-wound heat exchanger.
  • [1]
    吴金星, 李亚飞, 张灿灿, 等. 绕管式换热器的结构形式分析及应用前景[J]. 压力容器, 2014(2): 38-42. doi: 10.3969/j.issn.1001-4837.2014.02.006

    WU J X, LI Y F, ZHANG C C, et al. Structure development and application prospect of spiral-wound heat exchanger[J]. Pressure Vessel Technology, 2014(2): 38-42. doi: 10.3969/j.issn.1001-4837.2014.02.006
    [2]
    王庆锋, 郝帅, 李凯, 等. 基于CFD数值模拟的换热器外导流筒结构选型[J]. 石油机械, 2017, 45(2): 116-121. doi: 10.16082/j.cnki.issn.1001-4578.2017.02.026

    WANG Q F, HAO S, LI K, et al. CFD-based selection of external flow distributor structure for heat exchanger[J]. China Petroleum Machinery, 2017, 45(2): 116-121. doi: 10.16082/j.cnki.issn.1001-4578.2017.02.026
    [3]
    段钟弟, 任滔, 丁国良, 等. 分相的多股流LNG绕管式换热器动态模型[J]. 化工学报, 2015, 66(增刊2): 85-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ2015S2011.htm

    DUAN Z D, REN T, DING G L, et al. Multi-zone dynamic model for multi-stream LNG spiral wound heat exchanger[J]. CIESC Journal, 2015, 66(S2): 85-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ2015S2011.htm
    [4]
    张周卫, 薛佳幸, 汪雅红, 等. LNG系列缠绕管式换热器的研究与开发[J]. 石油机械, 2015, 43(4): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201504027.htm

    ZHANG Z W, XUE J X, WANG Y H, et al. Research and development of LNG wound-tube heat exchanger[J]. China Petroleum Machinery, 2015, 43(4): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201504027.htm
    [5]
    MESA J C, FOUST S A, POEHLEIN W G. Shell-side heat transfer coefficients in helical coil heat exchangers[J]. Ind Eng Chem Process Des Dev, 1969, 8(3): 343-347. doi: 10.1021/i260031a008
    [6]
    HO J C, WIJEYSUNDERA N E, RAJASEKAR S, et al. Performance of a compact spiral coil heat exchanger[J]. Heat Recovery Systems & CHP, 1995, 15(5): 457-468.
    [7]
    HO J C, WIJEYSUNDERA N E. Study of a compact spiralcoil cooling and dehumidifying heat exchanger unit[J]. Applied Thermal Engineering, 1996, 16(10): 777-790. doi: 10.1016/1359-4311(96)00002-6
    [8]
    尹接喜, 李清海, 施德强, 等. 缠绕管换热器并管传热模型及实验[J]. 清华大学学报(自然科学版), 2000, 40(6): 73-75. doi: 10.3321/j.issn:1000-0054.2000.06.021

    YIN J X, LI Q H, SHI D Q, et al. Heat transfer model land experiment for paired-tubes wound-tube heat exchangers[J]. Journal of Tsinghua University(Science and Technology), 2000, 40(6): 73-75. doi: 10.3321/j.issn:1000-0054.2000.06.021
    [9]
    NEERAAS B O, FREDHEIM A O, AUNAN B. Experimental shell-side heat transfer and pressure drop in gas flow for spiralwound LNG heat exchanger[J]. International Journal of Heat and Mass Transfer, 2004, 47(2): 353-361. doi: 10.1016/S0017-9310(03)00400-9
    [10]
    NEERAAS B O, FREDHEIM A O, AUNAN B. Experimental data and model for heat transfer, in liquid falling film flow on shell-side, for spiral-wound LNG heat exchanger[J]. International Journal of Heat and Mass Transfer, 2004, 47(14): 3565-3572.
    [11]
    JULIO C P, CARLOS A D. A review on heat exchangers thermal hydraulic models for cryogenic applications[J]. Cryogenics, 2011, 51: 366-379.
    [12]
    SRBISLAV B G, BRANISLAV M J, MARKO S J, et al. Research on the shell-side thermal performances of heat exchangers with helical tube coils[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 4295-4300.
    [13]
    吴志勇, 陈杰, 浦晖, 等. LNG绕管式换热器壳侧过热态流动的数值模拟[J]. 煤气与热力, 2014, 34(8): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MQRL201408018.htm

    WU Z Y, CHEN J, PU H, et al. Numerical simulation of superheated flow of refrigerant at shell side of LNG spiral wound heat exchanger[J]. Gas & Heat, 2014, 34(8): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MQRL201408018.htm
    [14]
    吴志勇, 陈杰, 浦晖, 等. LNG绕管式换热器结构与流通参数计算[J]. 煤气与热力, 2014, 34(3): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-MQRL201403014.htm

    WU Z Y, CHEN J, PU H, et al. Calculation of structural and circulation parameters of spiral-wound LNG heat exchanger[J]. Gas & Heat, 2014, 34(3): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-MQRL201403014.htm
    [15]
    LU X, DU X P, ZENG M, et al. Shell-side thermal-hydraulic performances of multilayer spiral-wound heat exchangers under different wall thermal boundary conditions[J]. Applied Thermal Engineering, 2014, 70: 1216-1227.
    [16]
    徐成良, 丁国忠. 绕管式换热器换热面积的一种简捷计算方法[J]. 低温与特气, 2015(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-DWTQ201501001.htm

    XU C L, DING G Z. A simple calculation method for helical wound coil tube heat exchangers[J]. Low Temperature and Specialty Gases, 2015(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-DWTQ201501001.htm
    [17]
    季鹏, 李玉星, 王武昌, 等. 结构参数对绕管式换热器传热特性的影响[J]. 油气储运, 2015, 34(8): 886-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201508018.htm

    JI P, LI Y X, WANG W C, et al. Effect of structural parameter on heat transfer performance of coil-wound heat exchanger[J]. Oil & Gas Storage and Transportation, 2015, 34(8): 886-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201508018.htm
    [18]
    吴尧增, 王文祥, 洪毅, 等. FLNG液化冷剂压缩机和主制冷换热器关键技术的突破[J]. 天然气工业, 2016, 36(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201601023.htm

    WU Y Z, WANG W X, HONG Y, et al. Key FLNG liquefaction technologies for refrigerant compressors and main cryogenic heat exchangers[J]. Natural Gas Industry, 2016, 36(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201601023.htm
    [19]
    李淑恒, 李庆生, 刘博. LNG绕管式换热器管内压降和传热的数值模拟[J]. 轻工机械, 2016, 34(2): 15-19, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-QGJX201602004.htm

    LI S H, LI Q S, LIU B. Numerical simulation of pressure drop and heat transfer inside tube of LNG coil-wound heat exchanger[J]. Light Industry Machinery, 2016, 34(2): 15-19, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-QGJX201602004.htm
    [20]
    丁超, 胡海涛, 丁国良, 等. 运行工况对LNG绕管式换热器壳侧换热特性的影响[J]. 化工学报, 2018, 69(6): 2417-2423. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201806010.htm

    DING C, HU H T, DING G L, et al. Influences of working conditions on heat transfer characteristics in shell side of LNG spiral wound heat exchangers[J]. CIESC Journal, 2018, 69(6): 2417-2423. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201806010.htm
    [21]
    尾花英朗. 热交换器设计手册[M]. 北京: 石油工业出版社, 1982: 735-738.

    OKA E. Heat exchanger design manual[M]. Beijing: Petroleum Industry Press, 1982: 735-738.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return