YU Peifeng, ZHU Xiaoxiao, ZHANG Shimin. Design of truncated model for steel catenary riser[J]. Oil & Gas Storage and Transportation, 2018, 37(12): 1418-1424. DOI: 10.6047/j.issn.1000-8241.2018.12.016
Citation: YU Peifeng, ZHU Xiaoxiao, ZHANG Shimin. Design of truncated model for steel catenary riser[J]. Oil & Gas Storage and Transportation, 2018, 37(12): 1418-1424. DOI: 10.6047/j.issn.1000-8241.2018.12.016

Design of truncated model for steel catenary riser

More Information
  • Received Date: December 16, 2017
  • Revised Date: November 04, 2018
  • Available Online: August 20, 2023
  • Published Date: November 07, 2018
  • Due to the limited experimental conditions, the establishment of the simulation model for the marine riser with super slenderness ratio is faced with many difficulties. In this paper, the latest hybrid experiment method for the mooring system of deepwater platform was introduced. Then, the characteristic parameters of truncated model were optimized by Matlab and Mathematic, e.g. elastic modulus, axial stiffness and mass per unit length, and a reasonable truncated model for steel catenary riser was established. Finally, the mechanical behavior of full water depth model was compared with that of truncated model by means of finite element simulation. It is indicated that the mechanical behavior of truncated model is similar to that of full water depth model and the calculation result of truncated model is accurate. Combined with the normal similarity principle, the small-scale physical model suitable for lab research can be established. The research results provide the theoretical support for the simulation experiment in the limited experimental conditions.
  • [1]
    BRIDGE C, WILLIS H, TOY N. Steel catenary risers -results and conclusions from large scale simulations of seabed interaction[C]. New Orleans: International Conference on Deep Offshore Technology, 2002: 1-5.
    [2]
    BRIDGE C, HOWELLS H, TOY N. Full-scale model tests of a steel catenary riser[J]. Transations on the Built Environment, 2004, 71: 107-116.
    [3]
    BRIDGE C, LAVER K, CLUKEY E, et al. Steel catenary riser touchdown point vertical interaction model[C]. Houson: Offshore Technology Conference, 2004: 16-28.
    [4]
    EGIL G. CARISIMA: a catenary riser/soil interaction model for global riser analysis[C]. British Columbia: Offshore and Arctic Engineering, 2004: 1-8.
    [5]
    李敢, 陈谦, 黄小平. 管土作用下的钢悬链线立管动力响应及其疲劳分析[J]. 舰船科学技术, 2016, 38(13): 103-107, 132. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201613024.htm

    LI G, CHEN Q, HUANG X P. The dynamic response and fatigue aanalysis of SCR considering the pipe-soil interaction[J]. Ship Science and Technology, 2016, 38(13): 103-107, 132. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201613024.htm
    [6]
    孙雷, 丁云峰, 姜宜辰, 等. 钢悬链线触地区管土作用模型试验[J]. 中国科技论文, 2017, 12(19): 2229-2235, 2240. doi: 10.3969/j.issn.2095-2783.2017.19.014

    SUN L, DING Y F, JIANG Y C, et al. Experimental research on pipe-soil interaction of touchdown zone on steel catenary riser[J]. China Sciencepaper, 2017, 12(19): 2229-2235, 2240. doi: 10.3969/j.issn.2095-2783.2017.19.014
    [7]
    WILLIS N R T, THETHI K S. Stride JIP: steel risers in deepwater environments -progress summary[C]. Houston: Offshore Technology Conference, 1999: OTC-10974-MS.
    [8]
    CLUKEY E C. Soil response and stiffness laboratory measurements of SCR pipe/soil interaction[C]. Houston: Offshore Technology Conference, 2008: OTC-19303-MS.
    [9]
    白兴兰, 陈侃. 钢悬链线立管触地区管-土相互作用试验研究[J]. 中国造船, 2016, 57(2): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201602014.htm

    BAI X L, CHEN K. Experiment on steel catenary riser-soil interaction in touchdown zone[J]. Shipbuilding of China, 2016, 57(2): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201602014.htm
    [10]
    姚锐, 白兴兰. 钢悬链线立管与海床相互作用小尺寸三维试验研究[J]. 海洋工程, 2015, 33(3): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201503013.htm

    YAO R, BAI X L. Small-scale 3D experiment research on interaction between SCR and seabed[J]. The Ocean Engineering, 2015, 33(3): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201503013.htm
    [11]
    任铁, 付世晓. 基于模型试验的实尺度立管涡激振动响应预报方法研究[J]. 船舶力学, 2011, 15(4): 364-370. doi: 10.3969/j.issn.1007-7294.2011.04.006

    REN T, FU S X. Full scale riser vortex-induced-vibration response prediction based on model test[J]. Journal of Ship Mechanics, 2011, 15(4): 364-370. doi: 10.3969/j.issn.1007-7294.2011.04.006
    [12]
    HODDER M S, BYRNE B W. 3D experiments investigating the interaction of a model SCR with the seabed[J]. Applied Ocean Research, 2010, 2: 146-157.
    [13]
    何宁, 王波, 王辉, 等. 深水钢悬链线立管三维动力分析[J]. 中国海上油气, 2010, 22(2): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201002013.htm

    HE N, WANG B, WANG H, et al. Three-dimensional dynamic analysis of deepwater SCR[J]. China Offshore Oil and Gas, 2010, 22(2): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201002013.htm
    [14]
    HU H J E, LEUNG C F. Centrifuge modelling of SCR vertical motion at touchdown zone[J]. Ocean Engineering, 2011, 38(7): 888-889.
    [15]
    HU H J E, LEUNG C F. Soil strength degradation due to SCR's vertical motion at touchdown zone[C]. Houston: Offshore Technology Conference, 2014: OTC-5037-MS.
    [16]
    BHATTACHARYYA A, TOGNARELLI M A. Simulation of SCR behavior at touchdown zone -part Ⅰ: numerical analysis of global SCR model versus sectional SCR model[C]. Rio de Janeiro: Offshore Technology Conference, 2011: OTC-22557-MS.
    [17]
    梁勇. 钢悬链线立管触地段管土作用研究[D]. 杭州: 浙江大学, 2014: 11-43.

    LIANG Y. Study on steel catenary riser-soil interaction in touchdown zone[D]. Hangzhou: Zhejiang University, 2014: 11-43.
    [18]
    王安庆, 黄小平. 钢质悬链线立管与海床土体相互作用的数值模拟[J]. 船舶力学, 2016, 20(1): 165-175. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX2016Z1020.htm

    WANG A Q, HUANG X P. Numerical simulation of interaction between SCR and seabed[J]. Journal of Ship Mechanics, 2016, 20(1): 165-175. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX2016Z1020.htm
    [19]
    王小东. 钢悬链线立管触地点区域管土相互作用的有限元分析[J]. 中国海洋大学学报, 2010, 40(增刊1): 197-200. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY2010S1033.htm

    WANG X D. Finite element analysis of steel catenary riser/seafloor interaction in the touch down zone[J]. Periodical of Ocean University of China, 2010, 40(S1): 197-200. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY2010S1033.htm
    [20]
    杨卡冰. 深水钢悬链线立管的动力分析[D]. 宁波: 宁波大学, 2014: 12-37.

    YANG K B. Dynamic analysis of deepwater steel catenary riser[D]. Ningbo: Ningbo University, 2014: 12-37.
    [21]
    毛海英. 钢悬链线立管整体动力响应分析研究[D]. 青岛: 中国海洋大学, 2015: 98-110.

    MAO H Y. Dynamic response of steel catenary riser with touch down zone[D]. Qingdao: Ocean University of China, 2015: 98-110.
    [22]
    郭海燕. 顶部浮体激励下钢悬链线立管的动力响应分析[J]. 中国海洋大学学报, 2009, 39(5): 1125-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200905057.htm

    GUO H Y. Dynamic responses of simple catenary riser subject to top end excitation[J]. Periodical of Ocean University of China, 2009, 39(5): 1125-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200905057.htm
    [23]
    高秦岭. 钢悬链线立管的ANSYS非线性有限元分析[D]. 青岛: 中国海洋大学, 2010: 10-39.

    GAO Q L. Nonlinear finite element analysis by ANSYS for steel catenary riser[D]. Qingdao: Ocean University of China, 2010: 10-39.
    [24]
    樊天慧. 深水半潜式平台锚泊截断的静力和低频阻尼等效试验方法[D]. 大连: 大连理工大学, 2016: 27-130.

    FAN T H. Model testing method of deepwater semi-submersible platform by truncation of mooring system based on statics and low-frequency damping equivalence[D]. Dalian: Dalian University of Technology, 2016: 27-130.
    [25]
    程传云. 深水锚泊系统截断优化设计[D]. 哈尔滨: 哈尔滨工程大学, 2015: 10-82.

    CHENG C Y. Truncation optimization design of deepwater mooring system[D]. Harbin: Harbin Engineering University, 2015: 10-82.

Catalog

    Article views (1) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return