Citation: | SHI Lei, SHAO Longyi, WANG Jieming, ZHU Huayin. The microscopic mechanism of operating loss in underground gas storage rebuilt from water-drive gas reservoir[J]. Oil & Gas Storage and Transportation, 2018, 37(6): 658-663. DOI: 10.6047/j.issn.1000-8241.2018.06.010 |
[1] |
BEN T, PEI C Y, ZHANG D L, et al. Gas storage in porous aromatic frameworks (PAFs)[J]. Energy and Environmental Science, 2011, 4(10): 3991-3999. doi: 10.1039/c1ee01222c
|
[2] |
SHIN C H, LEE J H. A numerical study on the compositional variation and the validity of conversion of a gas condensate reservoir into underground storage[J]. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2011, 33(20): 1921-1932. doi: 10.1080/15567036.2010.527906
|
[3] |
RIOS R B, BASTOS M, AMORA M R, et al. Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption[J]. Fuel, 2011, 90(1): 113-119. doi: 10.1016/j.fuel.2010.07.039
|
[4] |
WOOD D J, LAKE L W, JOHNS R T, et al. A screening model for CO2 flooding and storage in gulf coast reservoirs based on dimensionless groups[J]. SPE Reservoir Evaluation & Engineering, 2008, 11(3): 513-520.
|
[5] |
范子菲, 程林松, 宋珩, 等. 带气顶油藏油气同采条件下流体界面移动规律[J]. 石油勘探与开发, 2015, 42(5): 683-690. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505009.htm
FAN Z F, CHENG L S, SONG H, et al. Fluid interface moving for the concurrent production of gas cap and oil ring of gas cap reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 683-690. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505009.htm
|
[6] |
XU P, YU B M. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in Water Resources, 2008, 34(1): 74-81.
|
[7] |
ARNS C H, BAUGET F, LIMAYE A, et al. Pore-scale characterization of carbonates using X-ray microtomography[J]. SPE Journal, 2005, 10(4): 475-484. doi: 10.2118/90368-PA
|
[8] |
COST A A. Permeability-porosity relationship: A reexamination of the Dozen-Carman equation based on a fractal pore-space geometry assumption[J]. Geophysical Research Letters, 2006, 33(2): L02318.
|
[9] |
WANG Z, HOLDITCH S A. A comprehensive parametric simulation study of the mechanisms of a gas storage aquifer[J]. Society of Petroleum Engineers, 2005: 1-8.
|
[10] |
SHI L, WANG J M, LIAO G Z, et al. Mechanism of gas-water flow at pore-level in aquifer gas storage[J]. Journal of Central South University, 2013, 20(12): 3620-3626. doi: 10.1007/s11771-013-1888-x
|
[11] |
YU B M. Analysis of flow in fractal porous media[J]. Applied Mechanics Reviews, 2008, 61(4): 50-80.
|
[12] |
石磊, 廖广志, 熊伟, 等. 水驱砂岩气藏型地下储气库气水二相渗流机理[J]. 天然气工业, 2012, 32(9): 85-87. doi: 10.3787/j.issn.1000-0976.2012.09.020
SHI L, LIAO G Z, XIONG W, et al. Gas-water percolation mechanism in an underground gas storage built on a water-drive sandstone gas reservoir[J]. Natural Gas Industry, 2012, 32(9): 85-87. doi: 10.3787/j.issn.1000-0976.2012.09.020
|
[13] |
张建国, 刘锦华, 何磊, 等. 水驱砂岩气藏型地下储气库长岩心注采实验研究[J]. 石油钻采工艺, 2013, 35(6): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201306019.htm
ZHANG J G, LIU J H, HE L, et al. Long core injectionproduction experiments study on water flooding sandstone gas reservoir type underground gas storage[J]. Oil Drilling & Production Technology, 2013, 35(6): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201306019.htm
|
[14] |
王为民, 郭和坤, 叶朝辉. 利用核磁共振可动流体评价低渗透油田开发潜力[J]. 石油学报, 2001, 22(6): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106008.htm
WANG W M, GUO H K, YE C H. The evaluation of development potential in low permeability oilfield by the aid of NMR movable fluid detecting technology[J]. Acta Petrolei Sinica, 2001, 22(6): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106008.htm
|
[15] |
姜汉桥, 宋亮, 张贤松, 等. 基于核磁共振的正韵律厚油层高含水期挖潜室内实验[J]. 中国海上油气, 2014, 26(6): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201406008.htm
JIANG H Q, SONG L, ZHANG X S, et al. Laboratory NMR experiments on tapping the production potential of positive rhythmic and thick oil reservoirs in high water-cut stage[J]. China Offshore Oil and Gas, 2014, 26(6): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201406008.htm
|
[16] |
陈斌, 孙卫, 明红霞, 等. 特低渗透储层可动流体饱和度影响因素分析——以安塞油田长6储层为例[J]. 石油化工应用, 2014, 33(9): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201409022.htm
CHEN B, SUN W, MING H X, et al. Movable fluid saturation factor analysis of low permeability reservoir: taking the Chang 6reservoir in the Ansai oil field as an example[J]. Petrochemical Industry Application, 2014, 33(9): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201409022.htm
|
[17] |
李鹏举, 谷宇峰. 核磁共振T2谱转换伪毛管压力曲线的矩阵方法[J]. 天然气地球科学, 2015, 26(4): 700-705. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201504013.htm
LI P J, GU Y F. Matrix method of transforming NMR T2spectrum to pseudo capillary pressure curve[J]. Natural Gas Geoscience, 2015, 26(4): 700-705. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201504013.htm
|
[18] |
李太伟, 郭和坤, 金智荣, 等. 低渗透储层水锁伤害及解除机理核磁共振实验研究[J]. 石油化工应用, 2014, 33(12): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201412011.htm
LI T W, GUO H K, JIN Z R, et al. Experimental study on water-blocking damage mechanism and its solution mechanism in low permeability reservoirs by nuclear magnetic resonance[J]. Petrochemical Industry Application, 2014, 33(12): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201412011.htm
|
[19] |
吴国铭, 李熙喆, 何宇锋, 等. 碳酸盐岩储层岩心T2谱分形特征探究——以安岳气田为例[J]. 科学技术与工程, 2015, 15(14): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201514011.htm
WU G M, LI X Z, HE Y F, et al. The exploration on fractal feature of NMR T2 spectra for carbonate reservoir: a case study from Anyue Gas Field[J]. Science Technology and Engineering, 2015, 15(14): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201514011.htm
|
[20] |
唐立根, 王皆明, 白凤娟, 等. 基于修正后的物质平衡方程预测储气库库存量[J]. 石油勘探与开发, 2014, 41(4): 480-484. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201404016.htm
TANG L G, WANG J M, BAI F J, et al. Inventory forecast in underground gas storage based on modified material balance equation[J]. Petroleum Exploration and Development, 2014, 41(4): 480-484. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201404016.htm
|
[21] |
SHI L, GAO S S, XIONG W. Physical simulation of the mechanism for operation of water-encroached (flooded) under ground gasstorage facilities[J]. Chemistry and Technology of Fuels and Oils, 2012, 47(6): 426-433.
|
[22] |
胡世莱, 李继强, 姜楠, 等. 水驱气藏水侵动态储量损失实验研究[J]. 特种油气藏, 2017, 24(5): 146-149. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201705027.htm
HU S L, LI J Q, JIANG N, et al. Experimental study on dynamic reserves loss by water invasion in water-driven gas reservoirs[J]. Special Oil & Gas Reservoirs, 2017, 24(5): 146-149. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201705027.htm
|