SHI Lei, SHAO Longyi, WANG Jieming, ZHU Huayin. The microscopic mechanism of operating loss in underground gas storage rebuilt from water-drive gas reservoir[J]. Oil & Gas Storage and Transportation, 2018, 37(6): 658-663. DOI: 10.6047/j.issn.1000-8241.2018.06.010
Citation: SHI Lei, SHAO Longyi, WANG Jieming, ZHU Huayin. The microscopic mechanism of operating loss in underground gas storage rebuilt from water-drive gas reservoir[J]. Oil & Gas Storage and Transportation, 2018, 37(6): 658-663. DOI: 10.6047/j.issn.1000-8241.2018.06.010

The microscopic mechanism of operating loss in underground gas storage rebuilt from water-drive gas reservoir

More Information
  • Received Date: October 18, 2016
  • Revised Date: March 27, 2018
  • Available Online: August 20, 2023
  • Published Date: March 28, 2018
  • Microscopic mechanism of operating loss in underground gas storage (UGS) plays a key role in investigating the damage of water intrusion to the reservoir during the cyclic injection-production operation of water-drive gas reservoir UGS. Considering the effect of the moving back and forth of the water during UGS high-speed injection-production operation, UGS cyclic injection-production simulation NMR and microscopic visualization simulation technology were used jointly to investigate the distribution and migration characteristics of two-phase fluid in microscopic pores of UGS, analyze the utilization characteristics of underground reservoir space quantitatively and evaluate the microscopic mechanism and main controlling factors of operating loss in the water-drive gas reservoir UGS. It is indicated that the gas-water transition zone is the core region of operating loss during the injection-production operation of water-drive gas reservoir UGS and the watergas interlocking is in close relation with UGS injection-production loss. The research results provide the technical support and important basis for the optimization of injection-production operation scheme of water-drive gas reservoir UGS.
  • [1]
    BEN T, PEI C Y, ZHANG D L, et al. Gas storage in porous aromatic frameworks (PAFs)[J]. Energy and Environmental Science, 2011, 4(10): 3991-3999. doi: 10.1039/c1ee01222c
    [2]
    SHIN C H, LEE J H. A numerical study on the compositional variation and the validity of conversion of a gas condensate reservoir into underground storage[J]. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2011, 33(20): 1921-1932. doi: 10.1080/15567036.2010.527906
    [3]
    RIOS R B, BASTOS M, AMORA M R, et al. Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption[J]. Fuel, 2011, 90(1): 113-119. doi: 10.1016/j.fuel.2010.07.039
    [4]
    WOOD D J, LAKE L W, JOHNS R T, et al. A screening model for CO2 flooding and storage in gulf coast reservoirs based on dimensionless groups[J]. SPE Reservoir Evaluation & Engineering, 2008, 11(3): 513-520.
    [5]
    范子菲, 程林松, 宋珩, 等. 带气顶油藏油气同采条件下流体界面移动规律[J]. 石油勘探与开发, 2015, 42(5): 683-690. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505009.htm

    FAN Z F, CHENG L S, SONG H, et al. Fluid interface moving for the concurrent production of gas cap and oil ring of gas cap reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 683-690. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505009.htm
    [6]
    XU P, YU B M. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in Water Resources, 2008, 34(1): 74-81.
    [7]
    ARNS C H, BAUGET F, LIMAYE A, et al. Pore-scale characterization of carbonates using X-ray microtomography[J]. SPE Journal, 2005, 10(4): 475-484. doi: 10.2118/90368-PA
    [8]
    COST A A. Permeability-porosity relationship: A reexamination of the Dozen-Carman equation based on a fractal pore-space geometry assumption[J]. Geophysical Research Letters, 2006, 33(2): L02318.
    [9]
    WANG Z, HOLDITCH S A. A comprehensive parametric simulation study of the mechanisms of a gas storage aquifer[J]. Society of Petroleum Engineers, 2005: 1-8.
    [10]
    SHI L, WANG J M, LIAO G Z, et al. Mechanism of gas-water flow at pore-level in aquifer gas storage[J]. Journal of Central South University, 2013, 20(12): 3620-3626. doi: 10.1007/s11771-013-1888-x
    [11]
    YU B M. Analysis of flow in fractal porous media[J]. Applied Mechanics Reviews, 2008, 61(4): 50-80.
    [12]
    石磊, 廖广志, 熊伟, 等. 水驱砂岩气藏型地下储气库气水二相渗流机理[J]. 天然气工业, 2012, 32(9): 85-87. doi: 10.3787/j.issn.1000-0976.2012.09.020

    SHI L, LIAO G Z, XIONG W, et al. Gas-water percolation mechanism in an underground gas storage built on a water-drive sandstone gas reservoir[J]. Natural Gas Industry, 2012, 32(9): 85-87. doi: 10.3787/j.issn.1000-0976.2012.09.020
    [13]
    张建国, 刘锦华, 何磊, 等. 水驱砂岩气藏型地下储气库长岩心注采实验研究[J]. 石油钻采工艺, 2013, 35(6): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201306019.htm

    ZHANG J G, LIU J H, HE L, et al. Long core injectionproduction experiments study on water flooding sandstone gas reservoir type underground gas storage[J]. Oil Drilling & Production Technology, 2013, 35(6): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201306019.htm
    [14]
    王为民, 郭和坤, 叶朝辉. 利用核磁共振可动流体评价低渗透油田开发潜力[J]. 石油学报, 2001, 22(6): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106008.htm

    WANG W M, GUO H K, YE C H. The evaluation of development potential in low permeability oilfield by the aid of NMR movable fluid detecting technology[J]. Acta Petrolei Sinica, 2001, 22(6): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106008.htm
    [15]
    姜汉桥, 宋亮, 张贤松, 等. 基于核磁共振的正韵律厚油层高含水期挖潜室内实验[J]. 中国海上油气, 2014, 26(6): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201406008.htm

    JIANG H Q, SONG L, ZHANG X S, et al. Laboratory NMR experiments on tapping the production potential of positive rhythmic and thick oil reservoirs in high water-cut stage[J]. China Offshore Oil and Gas, 2014, 26(6): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201406008.htm
    [16]
    陈斌, 孙卫, 明红霞, 等. 特低渗透储层可动流体饱和度影响因素分析——以安塞油田长6储层为例[J]. 石油化工应用, 2014, 33(9): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201409022.htm

    CHEN B, SUN W, MING H X, et al. Movable fluid saturation factor analysis of low permeability reservoir: taking the Chang 6reservoir in the Ansai oil field as an example[J]. Petrochemical Industry Application, 2014, 33(9): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201409022.htm
    [17]
    李鹏举, 谷宇峰. 核磁共振T2谱转换伪毛管压力曲线的矩阵方法[J]. 天然气地球科学, 2015, 26(4): 700-705. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201504013.htm

    LI P J, GU Y F. Matrix method of transforming NMR T2spectrum to pseudo capillary pressure curve[J]. Natural Gas Geoscience, 2015, 26(4): 700-705. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201504013.htm
    [18]
    李太伟, 郭和坤, 金智荣, 等. 低渗透储层水锁伤害及解除机理核磁共振实验研究[J]. 石油化工应用, 2014, 33(12): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201412011.htm

    LI T W, GUO H K, JIN Z R, et al. Experimental study on water-blocking damage mechanism and its solution mechanism in low permeability reservoirs by nuclear magnetic resonance[J]. Petrochemical Industry Application, 2014, 33(12): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201412011.htm
    [19]
    吴国铭, 李熙喆, 何宇锋, 等. 碳酸盐岩储层岩心T2谱分形特征探究——以安岳气田为例[J]. 科学技术与工程, 2015, 15(14): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201514011.htm

    WU G M, LI X Z, HE Y F, et al. The exploration on fractal feature of NMR T2 spectra for carbonate reservoir: a case study from Anyue Gas Field[J]. Science Technology and Engineering, 2015, 15(14): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201514011.htm
    [20]
    唐立根, 王皆明, 白凤娟, 等. 基于修正后的物质平衡方程预测储气库库存量[J]. 石油勘探与开发, 2014, 41(4): 480-484. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201404016.htm

    TANG L G, WANG J M, BAI F J, et al. Inventory forecast in underground gas storage based on modified material balance equation[J]. Petroleum Exploration and Development, 2014, 41(4): 480-484. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201404016.htm
    [21]
    SHI L, GAO S S, XIONG W. Physical simulation of the mechanism for operation of water-encroached (flooded) under ground gasstorage facilities[J]. Chemistry and Technology of Fuels and Oils, 2012, 47(6): 426-433.
    [22]
    胡世莱, 李继强, 姜楠, 等. 水驱气藏水侵动态储量损失实验研究[J]. 特种油气藏, 2017, 24(5): 146-149. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201705027.htm

    HU S L, LI J Q, JIANG N, et al. Experimental study on dynamic reserves loss by water invasion in water-driven gas reservoirs[J]. Special Oil & Gas Reservoirs, 2017, 24(5): 146-149. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201705027.htm

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return