ZHOU Donglin, LI Jianjun, WANG Xiaogang, LIU Jiqin, JING Gang. Feasibility of the reuse of existing salt mining caverns in Yunying area[J]. Oil & Gas Storage and Transportation, 2017, 36(8): 930-936. DOI: 10.6047/j.issn.1000-8241.2017.08.010
Citation: ZHOU Donglin, LI Jianjun, WANG Xiaogang, LIU Jiqin, JING Gang. Feasibility of the reuse of existing salt mining caverns in Yunying area[J]. Oil & Gas Storage and Transportation, 2017, 36(8): 930-936. DOI: 10.6047/j.issn.1000-8241.2017.08.010

Feasibility of the reuse of existing salt mining caverns in Yunying area

More Information
  • Received Date: July 24, 2016
  • Revised Date: June 18, 2017
  • Available Online: August 20, 2023
  • Published Date: January 09, 2017
  • Underground salt rock is globally recognized as the most ideal medium for oil and natural gas storage because of its good physical and mechanical properties. In China, however, the construction of underground gas storage (UGS) in salt rocks starts later, and the productivity of existing UGSs needs improving urgently. Furthermore, Chinese UGS construction is faced with the problems of deficient good salt mine resources, high construction cost and slow commissioning speed. Whereas there are a great number of old underground caverns that are formed by salt mine enterprises by means of the salt mining all around the country, the effective way to speed up UGS construction and commissioning is to rebuild UGS from existing caverns. In this paper, the existing salt caverns in Yunying area were evaluated from the aspects of sealing capacity, stability and economy by analyzing the characteristics of salt layers and the data of brine producers. It is indicated that the salt layers in Yunying area are characterized by shallower burial depth, gentle structure, good sealing capacity of cap rocks and no faulting damage. There are considerable underground caverns and they are large with thick roofs and large pillar width. Some caverns are connected between layers for they are produced by means of fracturing connection with short well spacing. By comparison, those caverns where brine is produced in the mode of horizontal well butt with larger well spacing are not damaged by fracturing and their pillar width is relatively satisfactory, so they are taken as the preferred caverns for reconstruction.
  • [1]
    杨海军. 中国盐穴储气库建设关键技术及挑战[J]. 油气储运, 2017, 36(7): 747-753. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201707002.htm

    YANG H J. Construction key technologies and challenges of salt-cavern gas storage in China[J]. Oil & Gas Storage and Transportation, 2017, 36(7): 747-753. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201707002.htm
    [2]
    杨春和, 梁卫国, 魏东吼, 等. 中国盐岩能源地下储气储存可行性研究[J]. 岩石力学与工程学报, 2005, 24(24): 4409-4417. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200524001.htm

    YANG C H, LIANG W G, WEI D H, et al. Investigation on possibility of energy storage in salt rock in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24): 4409-4417. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200524001.htm
    [3]
    王清明. 石盐矿床与勘查[M]. 北京: 化学工业出版社, 2007, 12-14.

    WANG Q M. Rock salt deposit and exploration[M]. Beijing: Chemical Industry Press, 2007: 12-14.
    [4]
    丁国生, 李春, 王皆明, 等. 中国地下储气库现状及技术发展方向[J]. 天然气工业, 2015, 35(11): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202205010.htm

    DING G S, LI C, WANG J M, et al. The status quo and technical development direction of underground gas storages in China[J]. Natural Gas Industry, 2015, 35(11): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202205010.htm
    [5]
    LINA R. The development and new challenge of UGS in China[C]. Novy Urengoy: First Working Committee Meeting of WOC Storage 2015-2018 Triennium, 2015: 1-7.
    [6]
    杨海军, 郭凯, 李建君. 盐穴储气库单腔长期注采运行分析及注采压力区间优化——以金坛盐穴储气库西2井腔体为例[J]. 油气储运, 2015, 34(9): 940-950. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201509006.htm

    YANG H J, GUO K, LI J J. Analysis on long-term operation and interval optimization of pressure for single cavity injection/ production in underground salt cavern gas storage - Taking the cavity of Well Xi-2 in salt cavern gas storage in Jintan as an example[J]. Oil & Gas Storage and Transportation, 2015, 34(9): 940-950. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201509006.htm
    [7]
    杨海军, 于胜男. 金坛地下储气库盐腔偏溶与井斜的关系[J]. 油气储运, 2015, 34(5): 145-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201502006.htm

    YANG H J, YU S N. Relationship between salt cavern partial melting and well deviation of Jintan Underground Gas Storage[J]. Oil & Gas Storage and Transportation, 2015, 34(5): 145-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201502006.htm
    [8]
    李建君, 王立东, 刘春, 等. 金坛盐穴储气库腔体畸变影响因素研究[J]. 油气储运, 2014, 33(3): 269-273. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201403011.htm

    LI J J, WANG L D, LIU C, et al. Factors affecting cavities distortion of Jintan Salt Cavern Gas Storage[J]. Oil & Gas Storage and Transportation, 2014, 33(3): 269-273. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201403011.htm
    [9]
    郭凯, 李建君, 郑贤斌. 盐穴储气库造腔过程夹层处理工艺——以西气东输金坛储气库为例[J]. 油气储运, 2015, 34(2): 162-166. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201502011.htm

    GUO K, LI J J, ZHENG X B. Interlayer treatment process in cavity building for salt cavern gas storage - A case study of Jintan Gas Storage of West-to-East Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2015, 34(2): 162-166. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201502011.htm
    [10]
    杨海军, 闫凤林. 复杂老腔改建储气(油)库可行性分析[J]. 石油化工应用, 2015, 34(11): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201511021.htm

    YANG H J, YAN F L. Feasibility analysis of gas(oil)storage constructions based on complex existing salt caverns[J]. Petrochemical Industry Application, 2015, 34(11): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201511021.htm
    [11]
    田中兰, 夏柏如, 苟凤. 采卤老腔改建储气库评价方法[J]. 天然气工业, 2007, 27(3): 114-116. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200703040.htm

    TIAN Z L, XIA B R, GOU F. Evaluation method of reconstruction of existing caverns[J]. Natural Gas Industry, 2007, 27(3): 114-116. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200703040.htm
    [12]
    陈结, 姜德义, 刘春, 等. 盐穴建造期夹层与卤水运移互相作用机理分析[J]. 重庆大学学报(自然科学版), 2012, 35(7): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201207018.htm

    CHEN J, JIANG D Y, LIU C, et al. Analysis on the relationship of interlayer and brine migration in salt cavern construction period[J]. Journal of Chongqing University (Natural Science Edition), 2012, 35(7): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201207018.htm
    [13]
    TIAN Z L, YUAN G J, SHEN R C, et al. Appraisal method for gas storage construction based on exiting salt cavern[C]. Porto: Solution Mining Research Institute Spring Technical Conference, 2008: 1-10.
    [14]
    HILL L, ENCINITAS. Cavern well completion techniques including conversion of old cavern wells to alternate uses[C]. Berlin: Solution Mining Research Institute Fall Technical Conference, 2004: 1-6.
    [15]
    LIU W, CHEN J, JIANG D, et al. Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC)[J]. Applied Energy, 2016, 178: 703-720.
    [16]
    杨长来, 孔君凤, 刘伟. 盐矿水溶开采地表塌陷发生机理及防治措施[J]. 土工基础, 2014, 28(3): 128-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201403039.htm

    YANG C L, KONG J F, LIU W. Ground subsidence mechanism and mitigation methods a salt solution mining[J]. Soil Engineering and Foundation, 2014, 28(3): 128-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201403039.htm
    [17]
    任松, 李小勇, 姜德义, 等. 盐岩储气库运营期稳定性评价研究[J]. 岩土力学, 2011, 32(5): 1465-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201105028.htm

    REN S, LI X Y, JIANG D Y, et al. Evaluation of stability of gas storage during operation in salt rock[J]. Rock and Soil Mechanics, 2011, 32(5): 1465-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201105028.htm
    [18]
    陈结, 刘伟, 任松, 等. 利用双井盐穴溶腔建立国家战略石油储备体系[J]. 大科技, 2016(16): 285-286.

    CHEN J, LIU W, REN S, et al. Establishing national strategic reserve system of petroleum by using double-well leaching[J]. Super Science, 2016(16): 285-286.
    [19]
    夏筱红, 杨伟峰, 刘志强. 应城盐矿区采卤对接井施工技术[J]. 中国井矿盐, 2002, 33(3): 22-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJKY200203006.htm

    XIA X H, YANG W F, LIU Z Q. Construction technology of the connected brine wells in the Yingcheng salt mine[J]. China Well and Rock Salt, 2002, 33(3): 22-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJKY200203006.htm
    [20]
    李文魁. 平顶山盐田现有盐穴老腔的再利用探讨[J]. 中国井矿盐, 2015, 46(21): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJKY201503007.htm

    LI W K. Discussion of the reuse of existing salt old cavern of Pingdingshan salt field[J]. China Well and Rock Salt, 2015, 46(21): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJKY201503007.htm
    [21]
    JUN K, YEE P E. Solution mining plan for the enlargement of an existing Storage cavern capacity with additional leaching program[C]. Houston: Solution Mining Research Institute Spring Technical Conference, 2005: 1-7.
    [22]
    RAUCHE, HEIDRUM, HENRY. Exploration and risk assessment of solution and caving caverns in the old mining of the Stassfurt area[C]. Nancy: Solution Mining Research Institute Fall Technical Conference, 2005: 1-6.
    [23]
    DALE S P, JERRY T F. Finite element analysis of salt cavern employed in the strategic petroleum reserve[C]. New Mexico: Solution Mining Research Institute Fall Technical Conference, 1982: 1-6.
    [24]
    STEFAN W. Releaching and solution mining under gas (SMUG) of exiting caverns[C]. Basel: Solution Mining Research Institute Spring Technical Class Practical Aspect of Solution Mining, 2007: 1-8.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return