HE Guoxi, LIANG Yongtu, LI Yansong, WU Mengyu, FANG Limin, GAO Jie, LI Feng, LIU Shengli. Research progress of leakage diffusion and leakage volume calculation for buried liquid hydrocarbon pipeline[J]. Oil & Gas Storage and Transportation, 2017, 36(1): 8-20. DOI: 10.6047/j.issn.1000-8241.2017.01.002
Citation: HE Guoxi, LIANG Yongtu, LI Yansong, WU Mengyu, FANG Limin, GAO Jie, LI Feng, LIU Shengli. Research progress of leakage diffusion and leakage volume calculation for buried liquid hydrocarbon pipeline[J]. Oil & Gas Storage and Transportation, 2017, 36(1): 8-20. DOI: 10.6047/j.issn.1000-8241.2017.01.002

Research progress of leakage diffusion and leakage volume calculation for buried liquid hydrocarbon pipeline

More Information
  • Received Date: July 13, 2016
  • Revised Date: November 18, 2016
  • Available Online: August 20, 2023
  • Published Date: October 24, 2016
  • When liquid hydrocarbon pipeline is leaked, the effective prediction of leakage volume and leakage diffusion area is the foundation of shutdown and plugging plan optimization, as well as the reliable guarantee of safe, eco-friendly and economic pipeline operation. In this paper, the status and restriction of the studies on the internal flow and external diffusion in the process of pipeline leakage were investigated, including hydrothermal transient, liquid column separation and seepage diffusion in the soil. And it is shown that the internal flow in the process of pipeline leakage is involved with gas-liquid fast transient process and quasi-stable state slow transient process (such as gas release, cavity flow and liquid column separation), and it is concerned with the problems of flow-heat phase transition coupling and the effects of multiple constraints. Its overall process and mechanism haven't been revealed effectively. On the other hand, the effect of the surrounding conditions outside the leakage section on the conduit flow and the flowing at the leakage section and the seepage diffusion laws of leaked liquid hydrocarbon in the surroundings have not been figured out completely. Then, the global research results of external flow heat transfer and leakage calculation in the process of liquid hydrocarbon pipeline leakage were reviewed and the related experimental studies were analyzed. And finally, it was proposed that its key research and development directions focus on gas-liquid transient flow with the consideration of liquid hydrocarbon phase transition, the flowing characteristic of leaked section, the flow, diffusion and seepage law of leaked liquid hydrocarbon in complicated surroundings, leakage calculation and the optimization of shutdown plan with the minimum leakage volume as the target.
  • [1]
    GE C, WANG G, YE H. Analysis of the smallest detectable leakage flow rate of negative pressure wave-based leak detection systems for liquid pipelines[J]. Computers & Chemical Engineering, 2008, 32(8): 1669-1680.
    [2]
    LAURENTYS C A, BOMFIM C H M, MENEZES B R, et al. Design of a pipeline leakage detection using expert system: A novel approach[J]. Applied Soft Computing, 2011, 11(1): 1057-1066. doi: 10.1016/j.asoc.2010.02.005
    [3]
    SUN L, CHANG N. Integrated-signal-based leak location method for liquid pipelines[J]. Journal of Loss Prevention in the Process Industries, 2014, 32(11): 311-318.
    [4]
    NI L, JIANG J, PAN Y. Leak location of pipelines based on transient model and PSO-SVM[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1085-1093. doi: 10.1016/j.jlp.2013.04.004
    [5]
    VERDE C, MOLINA L, TORRES L. Parameterized transient model of a pipeline for multiple leaks location[J]. Journal of Loss Prevention in the Process Industries, 2014, 29(5): 177-185.
    [6]
    TORRES L, VERDE C. Modeling improvements for leak detection in pipelines of LPG[C]. Zurich: 2013 European Control Conference(ECC), 2013: 938-942.
    [7]
    李大全, 姚安林. 成品油管道泄漏扩散规律分析[J]. 油气储运, 2006, 25(8): 18-24. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=20060806

    LI D Q, YAO A L. The study on oil-diffusing law of product pipeline leaking[J]. Oil & Gas Storage and Transportation, 2006, 25(8): 18-24. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=20060806
    [8]
    NAZMUL Z S A E. Dynamic seals lower life costs of wastewater pumps[J]. Sealing Technology, 2004, 8(8): 11-12.
    [9]
    聂平, 邓松圣, 文俊. 管道泄漏水力瞬变模拟研究[J]. 油气储运, 2006, 25(7): 19-22. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=20060706

    NIE P, DENG S S, WEN J. Study on the leak in the hydraulic transient simulation of the pipeline[J]. Oil & Gas Storage and Transportation, 2006, 25(7): 19-22. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=20060706
    [10]
    刘恩斌, 彭善碧, 李长俊, 等. 基于瞬态模型的油气管道泄漏检测[J]. 天然气工业, 2005, 25(6): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200506032.htm

    LIU E B, PENG S B, LI C J, et al. Leakage detection of oil and gas pipeline by transient model[J]. Natural Gas Industry, 2005, 25(6): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200506032.htm
    [11]
    张青松, 赵会军, 王树立. 长距离输油管道水力瞬变特性分析[J]. 石油规划设计, 2006, 17(6): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGH200606013.htm

    ZHANG Q S, ZHAO H J, WANG S L. Analysis on hydraulic transient property in long-distance oil transmission pipeline[J]. Petroleum Planning & Engineering, 2006, 17(6): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGH200606013.htm
    [12]
    孙良, 王建林. 基于泄漏瞬变模型的管道泄漏检测与定位方法[J]. 应用基础与工程科学学报, 2012, 20(1): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201201019.htm

    SUN L, WANG J L. Release transient modeling based leak detection and location method for pipelines[J]. Journal of Basic Science and Engineering, 2012, 20(1): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201201019.htm
    [13]
    杜艳平. 成品油管道泄漏扩散及事故后果分析[D]. 北京: 中国石油大学(北京), 2008: 28-33.

    DU Y P. Leakage diffusion analysis of refined oil pipeline[D]. Beijing: China University of Petroleum(Beijing), 2008: 28-33.
    [14]
    才建, 宫敬, 宋生奎. 瞬变流动中液体管道摩阻损失计算方法综述[J]. 水利水电科技进展, 2007, 27(2): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD200702022.htm

    CAI J, GONG J, SONG S K. A review of calculation methods for friction-induced loss of transient flow in pipes[J]. Advances in Science and Technology of Water Resources, 2007, 27(2): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD200702022.htm
    [15]
    杨建东, 陈鉴治. 流体瞬变过程中的气体释放[J]. 武汉水利电力学院学报, 1987, 30(2): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD198702011.htm

    YANG J D, CHEN J Z. Gas release during fluid transients[J]. Engineering Journal of Wuhan University, 1987, 30(2): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD198702011.htm
    [16]
    BRETONA T, SANCHEZ G J C, ALAMILLAC J L, et al. Identification of failure type incorroded pipelines: A Bayesian probabilistic approach[J]. Journal of Hazardous Materials, 2010, 179(3): 628-634.
    [17]
    潘旭海, 蒋军成. 事故泄漏源模型研究与分析[J]. 南京工业大学学报(自然科学版), 2002, 24(1): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB200201032.htm

    PAN X H, JIANG J C. Progress of accidental release source and mechanism models[J]. Journal of Nanjing Tech University(Natural Science Edition), 2002, 24(1): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB200201032.htm
    [18]
    XIE Q, TU R, JIANG X, et al. The leakage behavior of supercritical CO2 flow in an experimental pipeline system[J]. Applied Energy, 2014, 130(10): 574-580.
    [19]
    蒲家宁. 管道水击分析与控制[M]. 北京: 机械工业出版社, 1991: 124-132.

    PU J N. Pipeline water hammer analysis and control[M]. Beijing: Mechanical Industry Press, 1991: 124-132.
    [20]
    BERGANT A, SIMPSON A R, TIJSSELING A S. Water hammer with column separation: A historical review[J]. Journal of Fluids and Structures, 2006, 22(2): 135-171. doi: 10.1016/j.jfluidstructs.2005.08.008
    [21]
    SIMPSON A R, BERGANT A. Numerical comparison of pipe-column-separation models[J]. Journal of Hydraulic Engineering, 1994, 120(3): 361-377. doi: 10.1061/(ASCE)0733-9429(1994)120:3(361)
    [22]
    BERGANT A, SIMPSON A R, TIJSSELING A S. Water hammer with column separation: a review of research in the twentieth century[M]. Eindhoven: Eindhoven University of Technology, 2004: 52-61.
    [23]
    BERGANT A, VITKOVSKY J, SIMPSON A, et al. Discrete vapour cavity model with efficient and accurate convolution type unsteady friction term[M]. Eindhoven: Eindhoven University of Technology, 2006: 21-25.
    [24]
    ADAMKOWSKI A, LEWANDOWSKI M. Improved numerical modelling of hydraulic transients in pipelines with column separation[C]. Brno: 3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, 2009: 419-431.
    [25]
    ADAMKOWSKI A, LEWANDOWSKI M. A new method for numerical prediction of liquid column separation accompanying hydraulic transients in pipelines[J]. Journal of Fluids Engineering, 2009, 131(7): 127-138.
    [26]
    ADAMKOWSKI A, LEWANDOWSKI M. Investigation of hydraulic transients in a pipeline with column separation[J]. Journal of Hydraulic Engineering, 2012, 138(11): 935-944. doi: 10.1061/(ASCE)HY.1943-7900.0000596
    [27]
    LUCAS D, BESTION D, BODELE E, et al. An overview of the pressurized thermal shock issue in the context of the nuresim project[J]. Science and Technology of Nuclear Installations, 2008, 14(10): 1-13.
    [28]
    SIMPSON A R, BERGANT A. Numerical comparison of pipe-column-separation models[J]. Journal of Hydraulic Engineering, 1994, 120(3): 361-377. doi: 10.1061/(ASCE)0733-9429(1994)120:3(361)
    [29]
    SHU J J. Modelling vaporous cavitation on fluid transients[J]. International Journal of Pressure Vessels and Piping, 2003, 80(3): 187-195. doi: 10.1016/S0308-0161(03)00025-5
    [30]
    BERGANT A, SIMPSON A R. Pipeline column separation flow regimes[J]. Journal of Hydraulic Engineering, 1999, 125(8): 835-848. doi: 10.1061/(ASCE)0733-9429(1999)125:8(835)
    [31]
    KRANENBURG C. The effect of gas release on column separation[M]. Delft: Delft University of Technology, 1974: 33-41.
    [32]
    BERGANT A, SIMPSON A R. Interface model for transient cavitating flow in pipelines[J]. Unsteady Flow and Fluid transients, 1992, 6(9): 333-342.
    [33]
    LIOU J C P. Numerical properties of the discrete gas cavity model for transients[J]. Journal of Fluids Engineering, 2000, 122(3): 636. doi: 10.1115/1.1287037
    [34]
    LIOU J C P. Numerical properties of the discrete gas cavity model for transients[J]. Journal of Fluids Engineering, 2000, 122(3): 636-639. doi: 10.1115/1.1287037
    [35]
    MOSHARAF D M, FIROOZABADI B. Effects of unsteady friction factor on gaseous cavitation model[J]. Scientia Iranica Transaction, B-mechanical Engineering, 2010, 17(1): 13-24.
    [36]
    BERGANT A, TIJSSELING A S, VITKOVSK J, et al. Further investigation of parameters affecting water hammer wave attenuation, shape and timing: part 1: mathematical tools: report on applied and numerical analysis[R]. Eindhoven: Eindhoven University of technology, 2003: 185-193.
    [37]
    贾文龙, 李长俊, 吴瑕, 等. 输油管道液柱分离模拟[J]. 西安石油大学学报(自然科学版), 2010, 25(3): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201003016.htm

    JIA W L, LI C J, WU X, et al. Simulation of the separation of liquid column in oil pipeline[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2010, 25(3): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201003016.htm
    [38]
    李长俊, 韩炜. 含气输油管道不稳定流动分析[J]. 油气储运, 2006, 25(2): 23-27. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=20060205

    LI C J, HAN W. Unsteady flow analysis of oil transmission pipeline with free gas[J]. Oil & Gas Storage and Trans-portation, 2006, 25(2): 23-27. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=20060205
    [39]
    宫敬, 严大凡, 于达. 管道压力瞬变中的汽化模拟[J]. 油气储运, 1999, 18(3): 16-19. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=19990306

    GONG J, YAN D F, YU D. Gasification simulation of pipeline during pressure transient[J]. Oil & Gas Storage and Transportation, 1999, 18(3): 16-19. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=19990306
    [40]
    蒋明, 雍歧卫, 李旭东. 伴有液柱分离的管道气液两相流动分析方法[J]. 油气储运, 2005, 24(1): 24-28. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=20050108

    JIANG M, YONG Q W, LI X D. Study on analytical method for pipeline two-phase flow with column separation[J]. Oil & Gas Storage and Transportation, 2005, 24(1): 24-28. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=20050108
    [41]
    叶宏开, 何枫, 陈国祥. 管路中有气泡时的水锤计算[J]. 清华大学学报(自然科学版), 1993, 33(5): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB199305003.htm

    YE H K, HE F, CHEN G X. Calculation of water hammer when free gas bubbles are existence[J]. Journal of Tsinghua University(Science and Technology), 1993, 33(5): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB199305003.htm
    [42]
    SADAFI M, RIASI A, NOURBAKHSH S A. Cavitating flow during water hammer using a generalized interface vaporous cavitation model[J]. Journal of Fluids and Structures, 2012, 34(10): 190-201.
    [43]
    郑源, 刘德有, 张健, 等. 有压输水管道系统气液两相瞬变流研究综述[J]. 河海大学学报(自然科学版), 2002, 30(6): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200206005.htm

    ZHENG Y, LIU D Y, ZHANG J, et al. Gas-liquid two-phase transient flows in pressurized water conveyance pipe system[J]. Journal of Hohai University (Natural Sciences), 2002, 30(6): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200206005.htm
    [44]
    郑源, 张健, 索丽生, 等. 输水管道水流对截留气团的冲击[J]. 水利学报, 2005, 36(11): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200511015.htm

    ZHENG Y, ZHANG J, SUO L S, et al. Impact pressure of pipeline water flow on detained air mass[J]. Journal of Hydraulic Engineering, 2005, 36(11): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200511015.htm
    [45]
    郑源, 索丽生, 屈波, 等. 有压输水管道系统含气水锤研究[J]. 河海大学学报(自然科学版), 2005, 20(4): 436-441. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200503010.htm

    ZHENG Y, SUO L S, QU B, et al. Study on water hammer with gas in pressurized water delivery pipeline system[J]. Journal of Hohai University(Natural Sciences), 2005, 20(4): 436-441. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200503010.htm
    [46]
    刘德有, 索丽生. 水流冲击管道内滞留气团的刚性数学模型[J]. 水科学进展, 2004, 15(6): 717-722. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200406006.htm

    LIU D Y, SUO L S. Rigid model for transient flow in pressurized pipe system containing trapped air mass[J]. Advanges in Water Science, 2004, 15(6): 717-722. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200406006.htm
    [47]
    ZHANG N, GONG J. Research on the method of dynamic air exhaust in hilly terrain pipelines commissioning process[C]. Brazil: International Brazil Pipeline Conference, 2007: 571-574.
    [48]
    LI S F, LYU L X, CHEN G J, WANG J X, et al. Numerical simulation of the soil unsteady temperature field around vertical buried pipe[C]. Jinan: The 4th International Conference on Sustainable Energy Technologies, 2005: 362-364.
    [49]
    WANG X H, WANG L M, ZHENG G, et al. Simulation of leakage model of long-distance oil pipeline based on FLUENT[J]. Applied Mechanics and Materials, 2013, 310: 280-286.
    [50]
    高清军, 褚云峰, 林建国. 海底管线溢油的数值模拟[J]. 大连海事大学学报, 2007, 33(2): 169-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS2007S2043.htm

    GAO Q J, CHU Y F, LIN J G. Mathematical simulation of oil spills from seabed pipeline[J]. Journal of Dalian Maritime University, 2007, 33(2): 169-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS2007S2043.htm
    [51]
    李玉春. 海底双层输油管道泄漏扩散数值分析[J]. 科学技术与工程, 2013, 13(1): 166-169. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201301037.htm

    LI Y C. Numerical analysis on leakage and diffusion of double-skin oil pipeline under the sea[J]. Science Technology and Engineering, 2013, 13(1): 166-169. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201301037.htm
    [52]
    糜利栋, 姜汉桥, 李俊键, 等. 页岩储层气体扩散机理[J]. 大庆石油地质与开发, 2014, 33(1): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201401030.htm

    MI L D, JIANG H Q, Li J J, et al. Mechanism of the gas diffusion in shale reservoirs[J]. Petroleum Geology and Oilfield Development in Daqing, 2014, 33(1): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201401030.htm
    [53]
    汪洋, 姜瑞忠, 孔垂显. 页岩储层基质和裂缝渗透率新模型研究[J]. 天然气地球科学, 2014, 25(6): 934-939. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201406018.htm

    WANG Y, JIANG R Z, KONG C X. The new model for matrix and fracture permeability in shale reservoir[J]. Natural Gas Geoscience, 2014, 25(6): 934-939. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201406018.htm
    [54]
    高雪利, 马贵阳. 埋地输油管道泄漏渗流数值模拟[J]. 辽宁石油化工大学学报, 2011, 31(2): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-FSSX201102007.htm

    GAO X L, MA G Y. Numerical simulation on seepage of underground pipeline leakage[J]. Journal of Liaoning Shihua University, 2011, 31(2): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-FSSX201102007.htm
    [55]
    马跃, 王岳, 宋士祥, 等. 成品油管道泄漏污染土壤范围模拟计算[J]. 辽宁石油化工大学学报, 2012, 32(2): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-FSSX201202014.htm

    MA Y, WANG Y, SONG S X, et al. Simulation on the spread range of oil pipeline leakage soil[J]. Journal of Liaoning Shihua University, 2012, 32(2): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-FSSX201202014.htm
    [56]
    李朝阳, 马贵阳, 刘亮, 等. 穿越河流管道泄漏数值模拟[J]. 北京石油化工学院学报, 2011, 19(3): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-BJSY201103004.htm

    LI Z Y, MA G Y, LIU L, et al. A numerical simulation of cross-river pipe leakage[J]. Journal of Beijing Institute of Petro-chemical Technology, 2011, 19(3): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-BJSY201103004.htm
    [57]
    刘瑞凯, 吴明, 王同秀, 等. 海底埋地热油管道泄漏扩散的数值模拟[J]. 中国安全生产科学技术, 2012, 8(8): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201208013.htm

    LIU R K, WU M, WANG T X, et al. Numerical simulation on leakage and diffusion of submarine buried hot oil pipeline[J]. Journal of Safety Science and Technology, 2012, 8(8): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201208013.htm
    [58]
    张永龙, 兰惠清, 符泽第. 埋地成品油管道泄漏强度模型与试验验证[J]. 安全与环境学报, 2015, 15(2): 134-137. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201502032.htm

    ZHANG Y L, LAN H Q, FU Z D. Leakage intensity testing model of the underground oil-refining pipes and its experimental verification[J]. Journal of Safety and Environment, 2015, 15(2): 134-137. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201502032.htm
    [59]
    WU G Z, XING C. Numerical simulation on leakage diffusion process of buried oil-gas-water pipeline[C]. Yichang: Proceedings of 2011 International Symposium-Multi-field Coupling Theory of Rock and Soil and Its Applications in Exploitation and Utilization of Resources, 2011.
    [60]
    宁丽, 曾溅辉, 陈广. 柴油在土壤中迁移的试验模拟研究[J]. 安全与环境学报, 2008, 8(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ200803004.htm

    NING L, ZENG J H, CHEN G. Simulated study on the migration process and effects of diesel oil on the soil properties[J]. Journal of Safety and Environment, 2008, 8(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ200803004.htm
    [61]
    杨宾, 李慧颖, 伍斌, 等. 4种NAPLs污染物在二维砂箱中的指进锋面形态特征研究[J]. 环境科学, 2013, 34(4): 1545-1552. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201304051.htm

    YANG B, LI H Y, WU B, et al. Sand box study on fingering front morphology for NAPLS infiltrated in homogeneous porous media[J]. Environmental Science, 2013, 34(4): 1545-1552. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201304051.htm
    [62]
    王久龙. 基于红外成像技术的埋地管道泄漏定位实验研究[D]. 大庆: 大庆石油学院, 2008: 24-28.

    WANG J L. Experimental study on the Location of field of buried pipeline leakaging with infrared image[D]. Daqing: Daqing Petroleum Institute, 2008: 24-28.
    [63]
    李永霞, 郑西来. 土壤非饱和带柴油迁移的模拟实验[J]. 环境化学, 2014, 33(11): 1841-1847. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201411004.htm

    LI Y X, ZHENG X L. Simulated experiment on transport of diesel oil in unsaturated soil zone[J]. Environmental Chemistry, 2014, 33(11): 1841-1847. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201411004.htm
    [64]
    WANG Y Q. Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores[J]. Journal of Environmental Sciences, 2009, 21(10): 1424-1431.
    [65]
    ABDUL A S. Migration of petroleum products through sandy hydrogeologic systems[J]. Groundwater Monitoring & Remediation, 1988, 8(4): 73.
    [66]
    郑西来, 杨喜成, 荆静. 地下水系统石油污染研究[M]. 西安: 西安地图出版社, 1998: 112-118.

    ZHENG X L, YANG X C, XING J. Research on petroleum pollution in underground water system[M]. Xi'an: Xi'an Map Press, 1998: 112-118.
    [67]
    郑西来, 席临平. 多孔介质吸附对石油污染物运移的阻滞效应研究[J]. 长春科技大学学报, 1999, 29(1): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ901.010.htm

    ZHENG X L, XI L P. The retard effects of oil contaminant transport caused by porous media adsorption[J]. Journal of Changchun University of Science and Technology, 1999, 29(1): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ901.010.htm
    [68]
    郑德凤, 赵勇胜, 王本德. 轻非水相液体在地下环境中的运移特征与模拟预测研究[J]. 水科学进展, 2002, 13(3): 321-325. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200203009.htm

    ZHENG D F, ZHAO Y S, WANG B D, et al. Research on the moving behaviors and modeling of light no aqueous phase liquid in subsurface[J]. Advances in Water Science, 2002, 13(3): 321-325. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200203009.htm
    [69]
    武晓峰. 轻质非水相流体在非饱和区及饱和区运移规律研究[D]. 北京: 清华大学, 1996: 62-75.

    WU X F. Research on the moving behaviors of light nonaqueous phase liquid in unsaturated and saturated soil zones[D]. Beijing: Tsinghua University, 1996: 62-75.
    [70]
    李永涛, 王文科, 王丽, 等. 轻非水相液体在非饱和带运移特征及分布规律研究[J]. 安全与环境学报, 2009 (5): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ200905022.htm

    LI Y T, WANG W K, WANG L, et al. On the transportation characteristics and distribution patterns of light-weight non-watery liquids in unsaturated zones[J]. Journal of Safety and Environment, 2009 (5): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ200905022.htm
    [71]
    李珊珊, 李建兵, 张文, 等. Visual modflow在模拟实验室含水砂槽中柴油运移特征中的应用[J]. 环境工程学报, 2013, 7(8): 3042-3047. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201604012.htm

    LI S S, LI J B, ZHANG W, et al. Application of Visual modflow in modeling transport of diesel in aquifer sandy trough[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 3042-3047. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201604012.htm
    [72]
    Fine P, Yaron B. Outdoor experiments on enhanced volatilization by venting of kerosene component from soil[J]. Journal of Contaminant Hydrology, 1993, 12(4): 355-374.
    [73]
    SCHROTH M H, ISTOK J D, SELKER J S. Three-phase immiscible fluid movement in the vicinity of textural interfaces[J]. Journal of Contaminant Hydrology, 1998, 32(1-2): 1-23.
    [74]
    吴国忠, 王宇, 齐晗兵, 等. 地下输油管道泄漏污染物迁移与残留实验研究进展[J]. 当代化工, 2015, 44(3): 510-512. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201503025.htm

    WU G Z, WANG Y, QI H B, et al. Research progress in experiments of migration and residue of contaminants from underground oil pipeline leakage[J]. Contemporary Chemical Industry, 2015, 44(3): 510-512. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201503025.htm
    [75]
    吴国忠, 郭恩玥, 齐晗兵, 等. 埋地输油管道泄漏污染物热力迁移实验技术研究进展[J]. 当代化工, 2014, 43(9): 1939-1942. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201409091.htm

    WU G Z, GUO E Y, QI H B, et al. Process of experiment techniques research on pollutant of thermodynamic and transport properties in leakage process of buried oil pipeline[J]. Contemporary Chemical Industry, 2014, 43(9): 1939-1942. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201409091.htm
    [76]
    PERESS J. Estimate evaporative losses from spills[J]. Chemical Engineering Progress, 2003, 99(4): 32-34.
    [77]
    MAZZOLDI A, HILL T, COLLS J J. CFD and Gaussian atmospheric dispersion models: A comparison for leak from carbon dioxide transportation and storage facilities[J]. Atmospheric Environment, 2008, 42(4): 8046-8054.
    [78]
    HERZOG N, EGBERS C. Atmospheric dispersion of CO2 released from pipeline leakages[J]. Energy Procedia, 2013, 40(10): 232-239.
    [79]
    GORENZ P, HERZOG N, EGBERS C. Investigation of CO2 release pressures in pipeline cracks[J]. Energy Procedia, 2013, 40(10): 285-293.
    [80]
    SALUFU S O, IBUKUN S. Prediction of rate and volume of oil spill in horizontal and inclined pipelines[C]. Lagos: Nigeria Annual International Conference and Exhibition, 2013: SPE-167605-MS.
    [81]
    李大全, 姚安林. 成品油管道泄漏扩散规律分析[J]. 油气储运, 2006, 25(8): 18-24. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=20060806

    LI D Q, YAO A L. The study on oil-diffusing law of product pipeline leaking[J]. Oil & Gas Storage and Transportation, 2006, 25(8): 18-24. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=20060806
    [82]
    OBIBUIKE U J, OBAH B, OGWO O U J, et al. A novel approach to estimation of leak volume in an oil pipeline[J]. Petroleum & Coal, 2015, 57(2): 154-168.
    [83]
    MODE A W, AMOBI J O, SALUFU S O. A model for predicting rate and volume of oil spill in horizontal and vertical pipelines[J]. Journal of Environment and Earth Science, 2013, 3(9): 12-19.
    [84]
    王新颖, 邵辉, 王宏鑫. 基于量纲分析的输液管道泄漏量计算模型研究[J]. 工业安全与环保, 2010, 36(4): 43-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GYAF201004022.htm

    WANG X Y, SHAO H, WANG H X. Research on the calculation model of pipeline leakage rate based dimension analysis[J]. Industrial Safety and Environmental Protection, 2010, 36(4): 43-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GYAF201004022.htm
    [85]
    REED M, EMILSEN M H, HETLAND B, et al. Numerical model for estimation of pipeline oil spill volumes[J]. Environmental Modelling & Software, 2006, 21(2): 178-189.
    [86]
    刘恩斌, 彭善碧, 李长俊, 等. 基于瞬态模型的油气管道泄漏检测[J]. 天然气工业, 2005, 25(6): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200506032.htm

    LIU E B, PENG S B, LI C J, et al. Leakage detection of oil and gas pipeline by transient model[J]. Natural Gas Industry, 2005, 25(6): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200506032.htm
    [87]
    张青松, 赵会军, 王树立. 长距离输油管道水力瞬变特性分析[J]. 石油规划设计, 2006, 17(6): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGH200606013.htm

    ZHANG Q S, ZHAO H J, WANG S L. Analysis on hydraulic transient property in long-distance oil transmission pipeline[J]. Petroleum Planning & Engineering, 2006, 17(6): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGH200606013.htm
    [88]
    ZHU H, LIN P, PAN Q. A CFD (computational fluid dynamic) simulation for oil leakage from damaged submarine pipeline[J]. Energy, 2014, 64(1): 887-899.
    [89]
    KIM B I, SHARMA M P, HARRIS H G. A statistical approach for predicting volume of oil spill during pipeline operations[C]. Dallas: SPE Annual Technical Conference and Exhibition, 1991: SPE-22807-MS.
    [90]
    RYAN K. GIS method for calculating maximum potential spill volume due to natural landforms[M]. Winona: Saint Mary's University of Minnesota Central Services Press, 2008: 100-110.
    [91]
    刘国华, 赵立奇. 输油管道泄漏损失量的评估方法[J]. 油气储运, 2013, 32(6): 672-674. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=201306000026

    LIU G H, ZHAO L Q. Assessment of leakage volume in oil pipeline[J]. Oil & Gas Storage and Transportation, 2013, 32(6): 672-674. https://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=201306000026
    [92]
    邵辉, 张蓉爱, 王新颖, 等. 气、液管道泄漏实验装置的设计[J]. 江苏工业学院学报, 2008, 20(2): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSY200802012.htm

    SHAO H, ZHANG R A, WANG X Y, et al. Study of experimental equipment designs for leakage of gas and liquid pipelines[J]. Journal of Jiangsu Polytechnic University, 2008, 20(2): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSY200802012.htm
    [93]
    JASPER A A, OVE G T, TORLEIV B. Experimental study of oil pipeline leak processes[J]. Journal of Environmental Protection, 2012, 18(3): 597-604.
    [94]
    付建民, 赵振洋, 陈国明, 等. 液相管道流量与压力对小孔泄漏速率的影响[J]. 石油学报, 2016, 37(2): 257-265. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602013.htm

    FU J M, ZHAO Z Y, CHEN G M, et al. Influences of liquid pipeline flow and pressure on small-hole leakage rate[J]. Acta Petrolei Sinica, 2016, 37(2): 257-265. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602013.htm
    [95]
    于永海, 索丽生. 有压瞬变流反问题研究综述[J]. 水利水电科技进展, 2000, 20(5): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD200005005.htm

    YU Y H, SUO L S. A survey on the approach of the inverse problems to fluid transients in pressurized systems[J]. Advances in Science and Technology of Water Resources, 2000, 20(5): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD200005005.htm
    [96]
    于永海, 索丽生. 有压瞬变流限压控制反问题的最优控制理论解法[J]. 河海大学学报(自然科学版), 2006, 34(1): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200601013.htm

    Yu Y H, SUO L S. Solution to inverse problem of hydraulic transients under limited pressure based on optimal control theory[J]. Journal of Hohai University(Natural Sciences), 2006, 34(1): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200601013.htm
    [97]
    宋生奎, 才建. 管道瞬变流动主动控制策略研究综述[J]. 管道技术与设备, 2006, 13(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGS200604000.htm

    SONG S K, CAI J. Review on active control strategy of transient flow in pipeline[J]. Pipeline Technique and Equipment, 2006, 13 (4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGS200604000.htm
    [98]
    王永红. 输油管道反问题最优控制研究[D]. 北京: 中国石油大学(北京), 2011: 41-50.

    WANG Y H. The investigation of the optimal control based on inverse problem for the product pipeline[D]. Beijing: China University of Petroleum(Beijing), 2011, 41-50.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return