

大跨径管道组合拱式跨越结构的 侧倾稳定性及刚度分析(下)

汤 国 栋

(重庆交通学院)

三、拱式跨越结构的侧倾稳定性

拱式跨越结构的侧倾稳定性,亦即出拱 平面的稳定性,如前所述由于水平风载在拱 跨结构中起主要的和控制的作用。因此,这 里所讨论的是同时考虑竖向、横向荷载共同 作用下的侧倾稳定性问题。

如表 2 附图,视供在设计的竖向荷 载 q作用下相应的轴向内力 (N = qR) 为常量,研究使拱侧倾的水平临界风载 P_k 的计 算。

由于求解这一问题的数学困难,目前尚未获得理论上的解析解。这里是从工程设计考虑,用间接的方法,提出一种实用的计算公式。

解决问题的基本思路是将拱代换为具有相同截面刚度和某一长度(I_{o})的直杆,在与拱相同的荷载作用下($qR=N=常量和水平风载力),则此直杆失稳的横向临界荷载(<math>P_{k}$)根据等效代换的原则,即为拱的临界水平荷载,然后以实验验证之。

1. 拱式跨越结构侧倾失稳的计算长度 确定拱的稳定性,从本质上讲,就是建 立临界荷载的计算公式;这也可用一个直杆 失稳的模型等效地代换拱的侧倾,此代换直 杆的长度(*I*₀)即为拱的计算长度(图14)。

诚然,一般情况下计算长度是以拱为直接研究对象进行稳定性分析的结果,本无单独的理论上的计算长度问题。但这种理论上的稳定分析是建立在理想的、典型计算图式上的(包括拱轴线几何特征、材料性质、边界条件、荷载性质及图式等),实际工程结构往往不能满足或不能完全满足这些条件,因此即使对于最简单的结构或杆件,实用上也不能不作若干假定和近似处理,确定计算图式和计算长度,然后通过实验验证其准确度,作为成立的依据。

可见计算长度既有其理论来源,实用中 也离不开一定的实验假设,参照有关文献,对 于矢跨比较小的圆弧拱侧倾稳定性的计算长

离,可根据被保护管段长短的实际情况缩短 或增长。一般在400~600米,位置与管线水 平或垂直皆可(多为水平位置)。

- 7. 根据目前使用的自动防腐仪来看(KKG-3B型恒电位仪),不要只考虑管理上方便,将保护站和泵站放在一起;主要应考虑怎样能使保护效果最佳。
 - 8. 设计前应做好保护站和阳极区调研

工作,特别是地区情况复杂地段,更应做好生产性临时阳极床的试验工作,以便达到设计效果,施工安装单位要保证管道防腐绝缘质量。绝缘法兰安装、泵站干线进出站穿墙处的绝缘及固定管墩、管卡的绝缘要严格检查验收,避免给生产单位在管理使用上造成困难,在经济上造成损失。

度,建议采用下列方式确定。结构实验表明,据此确定的临界荷载与实验值相差不大。

(1)取二分之一拱轴弧长作为其侧倾计 算长度

对于坦拱,其侧倾后之挠 曲 轴 线,近似地认为与长度和拱轴线相等的 两端 嵌 固约束的等直压杆屈曲形式相同,因此,文献〔2〕建议采用拱弧之半长为计算长度(图14):

$$I_0 = \varphi_k R \tag{35}$$

这里没有反映截面刚度的影响。

(2)采用文献[1]的公式确定计算长度 文献[1]系对于仅受坚向均布荷载作用 计算圆弧拱侧倾临界荷载的计算长度公式, 这里近似地取为本文所讨论的同时考虑竖、 横荷载作用时拱侧倾的计算长度公式,

$$I_{0} = \frac{R_{\varphi k} \sqrt[3]{1 + \frac{1}{\varepsilon_{x}} \left(\frac{\varphi_{k}}{\pi}\right)^{2}}}{1 - \left(\frac{\varphi_{k}}{\pi}\right)}$$
(36)

式中 $1/e_x$ 为拱截面的横向抗弯刚度(EJ_x)与抗扭刚度(C)之比值,R为圆弧 半 径,即

$$\frac{1}{\varepsilon_{X}} = \frac{EJ_{X}}{C}$$

$$(37)$$

$$\frac{1}{\sqrt{2}} = \frac{EJ_{X}}{C}$$

$$\sqrt{2} = \frac{EJ_{X}}{C}$$

(3)参照规范[11]采用下列公式确定 计算长度

规范 (TGLO-4114),根据实验建立 了拱在竖向荷载作用下侧倾失稳的计算长度 公式,原公式可改写为:

$$I_0 = 2 \zeta \beta \varphi_k R$$

式中: β —— 拱度影响系数, 见表 3;

$$\xi = 1 + 0.45\xi$$
 (38)

反之,当荷载对拱的侧倾变形起约束作用时 (如下承式系杆拱),

$$\zeta = 1 - 0.35\xi$$
 (39)

*§*为吊杆(或立柱)传递的力与总荷载的比值,即这里考虑了总荷载由桥道系和主拱圈共同承受。

对于承受管道自重及管内输送物重的管 道跨越结构,荷载可近似地视为竖向力的情况,即

$$\xi = 0$$
 $\zeta = 1$

上述几种不同方式所确定的计算长度相差不大,计算表明,影响水平临界荷载 (P_k)的诸因素中,计算长度的影响相对次要一些。当 I_0 相差10%时,按本文公式计算的相应临界荷载 (P_k)之差仅为2%左右。因此上述的间接确定拱侧倾失稳的计算长度,应是可以接受的。

f/L Jx	0.05	0.10	0.20	0.30	0,40
Jx=常数	0.50	0.54	0.65	0.82	1.07

拱度影响系数eta

2、临界荷载

Jxcosφ=常数

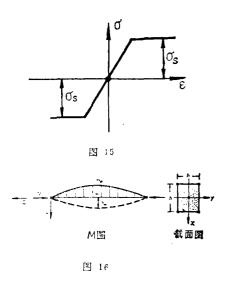
图14,当确定了拱侧倾的计算长度1。以后,拱的侧倾问题就转化为直杆的压弯稳定问题。分析这一问题的基本假设是:

- (1)结构材料在受力后的应力应变服从图15所示的简化图式,即材料在屈服以前E为常数,屈服以后,E=0,且抗拉、抗压屈服极限相等,截面挠曲时服从平面假设。
- (2)杆件屈曲后的挠度曲线方程式,设为

$$Y = Y_{\rm m} \sin \frac{\pi Z}{I_{\rm n}} \tag{40}$$

式中, Z——轴向坐标, 如图16所示,

表 3



以矩形截面为研究对象,然后推广到一 般截面。

由式(40),得杆件侧曲后之曲率:

$$\frac{1}{\rho} = -\frac{dY^2}{dx^2} = \frac{\pi^2}{I_0^2} Y_{\rm m} \sin \frac{\pi Z}{I_0}$$

对于跨中截面 (m) , $Z = I_0/2$,代入上式则

$$\frac{1}{\rho_{\rm m}} = \frac{\pi^2}{l_0^2} Y_{\rm m} \tag{41}$$

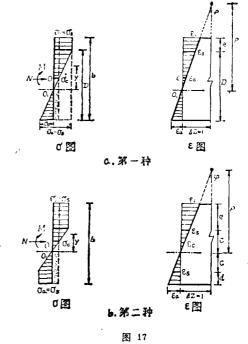
杆件在此情况下之屈曲,多属弹塑性屈曲。跨中截面的应力分布可能有两种情况,如图17所示。

第一种情况:杆件凹缘应力已超过材料的屈服极限,凸缘应力尚未屈服,仍处于弹性阶段。设跨中截面凹缘塑性扩展深度为e,则保留的弹性区深度为D=b-e,见图17a。

第二种情况:杆件两侧(凹、凸缘)应 力均已达到屈服极限。设跨中截面凹缘塑性 扩展深度为e,凸缘为d,如图17b,则保留 的弹性区深度为

$$2c = b - (e + d)$$

现分别讨论这两种情况下的临界荷载计算。对于拱式跨越结构,侧屈时属于第二种应力情况者较多,我们首先研究,然后简述第一种应力情况的公式导引及其主要结果。



(1)截面两侧应力均已达到屈服极限之 情形

如图17b, 截面两侧均已屈服, 在平 面 假设成立的前提下, 杆件截面的转角,

$$\varphi = \frac{\Delta Z}{\rho} = \frac{\Delta Z}{b} \left(|\varepsilon_i| + |\varepsilon_a| \right)$$
$$= \frac{\varepsilon_s}{C} - \Delta Z$$

对于跨中截面, 当 Z = 1 时, 其曲率,

$$\rho_{\rm m} = C$$
 $\rho_{\rm m} = C$
 $\epsilon_{\rm s} = \sigma_{\rm s} / E$

故

 $\frac{1}{\rho_{\rm m}} = \frac{\sigma_{\rm s}}{CE}$

将 (41) 式代入,则弹性区深度

$$C = \frac{l_0^2 \sigma_{\rm s}}{\pi^2 E Y_{\rm m}} = \frac{i_{\rm x} \, ^2 \sigma_{\rm s}}{\sigma_{\rm e} \, Y_{\rm m}}$$

式中: $i_{\rm x} \, ^2 = J_{\rm x} / F$

 $\sigma_{\rm e} = \pi^2 E/\lambda_{\rm x}^2$ 式 (42) 确定了跨中截面弹性区的深度 (C) 与杆件挠度 ($Y_{\rm m}$) 间的函数关系,

进而将根据平衡条件,建立内力 (M) 与挠

 $\lambda_{\rm x}^{2} = l_0^{2}/i_{\rm x}^{2}$

度 (Y_m) 间的关系式,以及荷载与挠 度间的函数关系。最后应用临界状态 准则 $dp/dY_m=0$,导引临界荷载 (P_k) 的 计算公式。

由图17b的平衡条件, $\Sigma N = 0$

$$\text{MJ} \quad N = \int_{b} h \sigma dY$$

观察图17b之 σ 图,不难确定积分

$$N = \int_{b} h\sigma dY = h\sigma_{s} (e - d)$$

注意到压应力 $\sigma_c = N/bh$, 以及图中的 几何 关系,

故
$$e-d=\sigma_c \cdot b/\sigma_s$$

$$e+d=b-2C$$
则 $e=\frac{b}{2} (1+\frac{\sigma_c}{\sigma_s})-C$

$$d=\frac{b}{2} (1-\frac{\sigma_c}{\sigma_s})-C$$

$$e^2+d^2=\frac{b^2}{2} (1+\frac{\sigma_c}{\sigma_s}^2)+2C^2$$

再由平衡条件 $\sum m_0 = 0$

$$M = h\sigma_{s} \quad \left(2 \cdot \frac{C}{2} \cdot \frac{2}{3} \cdot C + e \right)$$

$$\times \left(\frac{b}{2} - \frac{e}{2} \right) + d \cdot \left(\frac{b}{2} - \frac{d}{2} \right)$$

将上式整理后,代入e、d值,

$$M = \frac{1}{2} h\sigma_s \left(\frac{b^2}{2} \left(1 - \frac{\sigma_c}{\sigma_s} \right)^2 \right)$$
$$-\frac{2}{3} C^2$$

再将式(42)代入,最后可得:

$$M = -\frac{3}{2} W_{\rm X} \sigma_{\rm S} \left(1 - \frac{\sigma_{\rm C}^{2}}{\sigma_{\rm S}^{2}}\right) - \frac{hi_{\rm X}^{4} \sigma_{\rm S}^{3}}{3 \sigma_{\rm e}^{2} T_{\rm m}^{2}}$$
(43)

式中: $W_X = b^2 h/6$

$$\boxed{0} \qquad \frac{dM}{dY_{\rm m}} = \frac{2 \, h i_{\rm x}^4 \, \sigma_{\rm s}^3}{3 \, \sigma_{\rm e}^2 \, Y_{\rm m}^3}$$

由杆件截面上的内力矩 (M) 与外力矩 (m) 的平衡,即m=M

由图
$$16$$
, $m = m_p + NY_m$ (44)
其中由于水平风载引起的拱顶力矩,可写成:

$$m_P = k_{\rm m} p R^2 \tag{45}$$

式中: p——沿拱弧分布的均匀水 平风荷载 集度(不计风载沿拱高的变化);

 $k_{\rm m}$ ——拱顶截面弯矩系数,查 表 4 。 对于f/l ≤ 1/8 的坦拱,其轴向力

$$N \approx qR$$

*q*为圆弧拱所承受的竖向均布荷载集度。 对式 (44) 求导:

$$\frac{dm}{dY_{\rm m}} = \frac{dm_{\rm p}}{dY_{\rm m}} + N \tag{46}$$

又由似(45),

$$\frac{dmp}{dY_{\rm m}} = k_{\rm m}R^2 \frac{dp}{dY_{\rm m}} \tag{47}$$

实验证明: 当 $N = qR = 常数时,水平风载(p) 与跨中挠度(Y_m)间呈图18所示的曲线关系。即<math>p-Y_m$ 曲线有一个顶点(k),即:

$$dp/dY_{m} = 0$$
 (48)
相应的坐标为 P_{k} 和 Y_{mk}

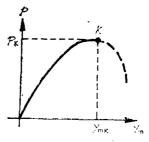


图 18

此即临界状态准则,其中 P_k 为所求之临界水平荷载。

将式(48)代入式(46)及(47),则临界状态

$$dm/dY_{m} = N$$
 $N = bh\sigma_{c}$

当处于临界状态时,作用于截面的外力矩 (*m*)与材料的内力矩 (*M*)对于该截面 挠度 (*Y*_m)之增长率相等,即:

挠度
$$(Y_m)$$
 之增长率相等,即:

$$\frac{dm}{dY_m} = \frac{dM}{dY_m}$$
 (50)

$$\text{MI} \qquad Y_{\text{mk}} = \sigma_{\text{S}} i_{\text{X}}^{3} \sqrt{\frac{2 h}{3 \sigma_{\text{e}}^{2} \sigma_{\text{c}} J_{\text{X}}}}$$

(51)

f/L	1	f/L	1	f/L	1
C/EJx	8	C/EJx	10	C/EJx	12
0.010	0.0259489	0.010	0.0174573	0.010	0.0125326
0.020	0.0272955	0.020	0.0186134	0.020	0.0135192
0.030	0.0284039	0.030	0.0194894	0.030	0.0142083
0.040	0.0293304	0.040	0.0201784	0.040	0.0147204
0.050	0.0301180	0.050	0.0207324	0.050	0.0151144
0.060	0.0307943	0.060	0.0211884	0.060	0.0154272
0.070	0.0313827	0.070	0.0215713	0.070	0.0156800
0.080	0.0318981	0.080	0.0218957	0.080	0.0158909
f/L		f/L	1	f/L	
C/EJx	1 9	C/EJx	111	C/EJx	1 13
0.010	0.0210736	0.010	0.0146311	0.010	0.0077358
0.020	0.0223218	0.020	0.0157071	0.020	0.0092354
0.030	0.0233095	0.030	0.0164918	0.030	0.0102444
0.040	0.0241086	0.040	0.0170912	0.040	0.0109760
0.050	0.0247702	0.050	0.0175612	0.050	0.0115259
0.060	0.0253263	0.060	0.0179394	0,060	0.0119556
0.070	0.0257993	0.070	0.0182537	0.070	0.0122989
0.080	0.0262081	0.080	0.0185161	0.080	0.0125837

最后,由式(43)、(44)、(50)联解,可得:

$$P_{k} = \frac{3 \sigma_{s} W_{x}}{2 k_{m} R^{2}} \left[1 - \left(\frac{\sigma_{c}}{\sigma_{s}} \right)^{2} - \left(\frac{\sigma_{c}}{\sigma_{e}} \right)^{2/3} \right]$$
 (52)

此即计算临界水平风载的公式。式中W_x 为 截面横向挠曲的抗弯模量,对于桁架体系, 我们计入了腹杆系剪切变形的影响。实践证明,一般情况下此项影响不大,可略去不计。

(2)截面一侧应力达到屈服极限另一侧 仍处于弹性阶段之情形

如图17a,沿用上述解决问题的思路, 先研究变形,然后建立变形与荷载间的函数 关系,进而由临界状态准则(式50)导引临界 荷载计算公式。

山图17a, 截面转角:

$$\varphi_{\rm m} = \frac{\Delta Z}{\rho_{\rm m}} = \frac{1}{D} (\varepsilon_{\rm s} + \varepsilon_{\rm a}) \Delta Z$$

当 $\Delta Z = 1$ 时,跨中截面的曲率。

$$\frac{1}{\rho_{\rm m}} = \frac{1}{D} (\varepsilon_{\rm s} + |\varepsilon_{\rm a}|)$$

因在此情况下, $|\sigma_a| \leq \sigma_s$ 。 现研究其极 限情形,

例
$$|\sigma_a| = \sigma_s$$
 (53)
例 $|\varepsilon_a| = \varepsilon_s$
得 $\frac{1}{\rho_m} = \frac{2\varepsilon_s}{D} = \frac{2\sigma_s}{DE}$

将其代入(41)式,得

$$\frac{\pi^2}{l_0^2} Y_{\rm m} = \frac{2\sigma_{\rm s}}{ED}$$

再将式(42)代入,

$$D = \frac{2 \sigma_{\rm s}}{Y_{\rm m} \sigma_{\rm e}} \cdot i_{\rm x}^{2} \tag{54}$$

此式表明了杆件挠度 ($Y_{\rm m}$) 与跨中截 面弹性区深度的关系。进而由平衡条件导引 内力、荷载与变形 ($Y_{\rm m}$) 间的关系。

$$\exists N = 0$$

$$\exists N = \int_b h \sigma dY$$

将图17 a 的应力分布,视为矩形 $h\sigma_s$ 与三角形 $\frac{1}{2}$ • $D(\sigma_s + \sigma_a)$ 迭加的结果,以计算截面的合力及合力矩。则。

$$N-bh\sigma_s + -\frac{1}{2}-hD(\sigma_s + \sigma_a) = 0$$

引用条件 (53) 式及 $N = bh\sigma_c$, 得: $D\sigma_s = b(\sigma_s - \sigma_c)$

再由平衡条件 $\Sigma M_c = 0$

得
$$M = -\frac{1}{2} - h(\sigma_s + \sigma_a)D$$

$$\times \left(\frac{1}{2} - \frac{D}{3} - \right)$$

将(54)式代入,

$$M = \frac{b^2 h}{2} (\sigma_s - \sigma_c) (1 - \frac{2}{3b})$$

$$\times \frac{2 \sigma_s}{\sigma_e V_m} i_x^2)$$

或

$$M = \frac{b^2 h}{2} (\sigma_s - \sigma_c)$$

$$\times (1 - \frac{4 \sigma_s i_x^2}{3 b \sigma_c Y_m})$$
 (55)

故
$$\frac{dM}{dY_{\rm m}} = \frac{2 bh\sigma_{\rm s} i_{\rm x}^2}{3 \sigma_{\rm e} Y_{\rm m}^2} (\sigma_{\rm s} - \sigma_{\rm e})$$

于是,根据(48)式及(49)、(56)式及 $N = bh\sigma_c$,

则
$$\frac{2 b h \sigma_s i_x^2}{3 \sigma_e Y_m^2} (\sigma_s - \sigma_c) = b h \sigma_c$$

令临界状态之 $Y_m = Y_{mk}$

故
$$Y_{\text{mk}} = i_{\text{x}} \sqrt{\frac{2\sigma_{\text{s}} (\sigma_{\text{s}} - \sigma_{\text{c}})}{3\sigma_{\text{e}} \sigma_{\text{c}}}}$$
 (57)

将其与(44)、(45)、(55) 式联解,并令临界状态的水平风载 $P = P_k$,最后可得。

$$P_{k} = \frac{W_{x}}{k_{m}R^{2}} \left(3 \left(\sigma_{s} - \sigma_{c} \right) - 2 \sigma_{s} \sigma_{c} \sqrt{\frac{2}{\sigma_{e}} \left(\frac{1}{\sigma_{c}} - \frac{1}{\sigma_{s}} \right)} \right)$$
(58)

(3)公式的适用条件:

至此,对图17 a、b两种应力情况导引

了临界水平风载的计算公式。公式所依据的应力图式及其适用条件,通常的文献[12,13]均有叙述,其结论是。

a.图17 b及式 (52) 适用于

$$K = \left(\frac{mp}{N} / \gamma_y\right) \geqslant 3 \tag{59}$$

式中 m_P 由式 (45) 确定, $N \approx qR$, $\gamma_Y = W_X/F$,F为截面积。

b.图17a及式 (58) 适用于

$$K = \left(\frac{m_p}{N} / \gamma_y\right) < 3 \tag{60}$$

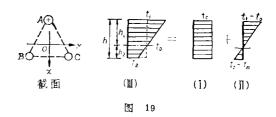
对于大跨径组合钢管拱式跨越结构,多属于 $K \ge 3$ 的大偏心率的情况。通常可先按式 (52) 计算,然后核算偏心率 K 是 否满足适用条件。

四、温度内力及温度变形

现在讨论大跨径组合管道拱式跨越结构 中,管道间具有相对温差时的内力及变形计 算。

设拱式跨越结构安装封拱 时 的 温 度为 t ,结构营运期间运载管道及其输送物的温 度与封拱温度 (t) 之差为 t_1 ,结 构 管 道 (空管,图19之 B、C) 的温度与封拱温 度 之差为 t_2 ,通常 $t_1 > t_2$ 。取温度升高为正,下降为负。

由于跨越结构管道间的温差即是输送物与气温之差(空管温度与气温一般相同), 因此计算中假定温度沿截面一个主轴方向渐变时,沿另一主轴方向保持不变,且温度规律是线性的。在截面同一高度上沿拱轴方向温度不变。



为了分析方便,将图19的截 面 温 度 分布 分解 为: (1)全 截 面 均 匀 升 (降) 温

(图19 I).

(2)沿截面一个主轴方向具有相对温差 (图19 II) 两种情况。

根据上述假设, 拱轴线上(截面形心)的温度增量为,

$$t_0 = \frac{1}{h} \quad (h_1 t_2 + h_2 t_1) \tag{61}$$

对于 $h_1 = h_2$ 的对称截面

$$t_0 = \frac{1}{2} (t_1 + t_2)$$

1. 温度内力

现分别讨论上述两种情况下 的 內 力 计算。

(1)全截面均匀升温时的内力计算

如图19 I 所示,组合无铰拱 式 跨 越 结构,整个截面均匀升 (降) 温时所引起的内力计算,其研究已很成熟,一般资料均有叙述^[2,14],为了与相对温差内力 迭 加 的 需要,现直引其结果。

对图20所示之无铰拱的基本体系,由于 对称性,在弹性中心处,仅 $H_t \neq 0$,而

$$M_{t} = 0 Q_{t} = 0$$

$$H_{t} = \beta \cdot \frac{\alpha t_{0} E J_{y}}{I^{2}} (62)$$

式中: / --- 拱的计算跨径,

α---材料的温度线胀系数,

$$\beta = \frac{8\sin^3 \varphi_k}{k_1 + \frac{i_y^2}{I^2} 4 \sin \varphi_k \cdot k_2}$$

 $k_1 = \varphi_k + \sin\varphi_k \cos\varphi_k$

$$k_2 = k_1 - \frac{2\sin^2\varphi k}{\varphi k}$$

$$iy^2 = J_y/F$$

任意截面(坐标角为 φ)的内力:

$$N\varphi_{t}' = -H_{t}'\cos\varphi \qquad (63)$$

$$M_{yt}' = -H_{t}(X_{s} - X)$$

式中 $X = R(1 - \cos \varphi)$

$$X_s = C_1 R$$

故
$$M_{yt}' = H_t R(1 - C_1 - \cos \varphi)$$
 (64)

$$Q_{\varphi t}' = H_t \sin \varphi \tag{65}$$

实际作结构数值计算时,当然以手册查 表计算较为方便(见文献1)。

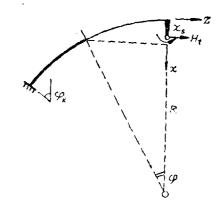


图 20

(2)相对温差内力计算

弦管间的温差,又可分为上下弦管具有相对温差(图19)和左右两侧弦管具有相对温差(图22)两种情况,将分别予以讨论。

a.上下弦管具有相对温差的内力计算

如图19 \mathbb{I} 所示,截面上下弦管各具有相对于中性层(拱轴线)的温度差,分别为 (t_1-t_0) 和 (t_2-t_0) ,当然 $t_1\neq t_2$ 。

由对称性条件不难知道,此时作用于图 21拱顶截面的

$$H_{\mathfrak{t}}"=0 \qquad Q_{\mathfrak{t}}"=0$$

 $\overline{m} \quad M_{vt}" \neq 0$

如图21,取微分拱段dS,当上下弦管发生相对温差变形时,自由伸长引起的截面转角,由图示几何关系可知:

$$d\theta_{t} = \frac{1}{h} \left[\alpha(t_{1} - t_{0}) dS - \alpha(t_{2} - t_{0}) dS \right]$$
或
$$d\theta_{t} = \frac{1}{h} \alpha \Delta t dS$$

$$\Delta t = t_{1} - t_{2}$$
(66)

由于结构的超静定特性,截面不可能自由转动,将受到相邻截面的弹性约束—— M_{yt} "的作用。在 M_{yt} "的作用下,截面将产生相反的转角,由虎克定律:

$$d\theta_{\rm m} = -\frac{M_{\rm yt}''}{EJ_{\rm y}}dS$$

由于对称性, 在拱顶截面处,

$$\int_{s} d\theta_{t} - \int_{s} d\theta_{m} = 0$$

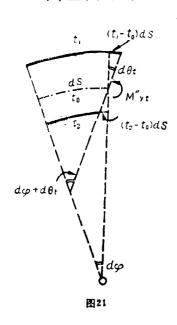
沿拱轴(S)方向 Δt 和 M_{yt} "均为常量,最后可得。

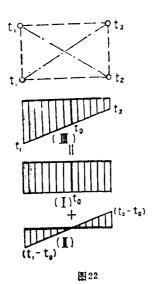
$$M_{yt}'' = \frac{1}{h} \alpha \Delta t E J_y \tag{67}$$

式中: h---截面沿竖向的高度,

EI, ——截面竖向抗弯刚度,

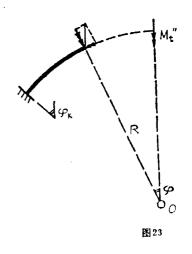
△t──由(66)式确定,不难推知其也 等于上下弦管的相对温差。

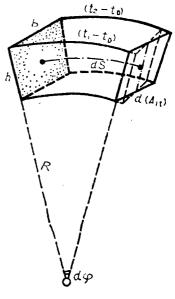




b. 左右弦管具有相对温差的内力 计算 图22所示之双轴对称截面,其左侧弦管 与封拱温度之差为t₁,右侧弦管与封拱温度 之差为t₂,设t₁>t₂。

同样将此温度分布分解为。全截面均匀升温(图19 I)和按线性分布的温差(图22 II)两种情形。此时全截面均匀升温的计算已如式(62)、(63)和(64)所示。现仅需讨论具有相对温差(图22 II)的计算。





如图23,在拱顶处切开,取悬臂曲梁为基本结构。当只有左右弦管间的相对温差时,则拱顶截面处:

图24

$$N_t " = 0$$

$$Q_t = 0$$

$$M_t " \neq 0$$

$$M_{t}''\delta_{11} + \Delta_{1t} = 0$$

$$\overline{M} = \cos \varphi$$
 $\overline{T} = -\sin \varphi$

取图23所示的 M_t "矢量(与X坐标轴方向相同)为正,扭矩矢量(T)与截面外法线(Z)方向一致为正。则

$$EJ_{x}\delta_{11} = \int_{s} \overline{M^{2}} dS + \frac{EJ_{x}}{C} \int_{s} \overline{T^{2}} dS$$

将M及T代入,并引用式(37)得

$$EJ_{x} \delta_{11} = R \int_{0}^{\varphi k} \cos^{2}\varphi d\varphi + \frac{1}{\varepsilon_{x}} R$$
$$\times \int_{0}^{\varphi k} \sin^{2}\varphi d\varphi$$

积分化简后

$$E J_x \delta_{11} = R \left[(1 + \frac{1}{\epsilon_x}) \frac{\varphi_k}{2} + (1 - \frac{1}{\epsilon_x}) \frac{1}{4} \sin^2 \varphi_k \right]$$

再由图24的几何关系可得:

$$\Delta_{1t} = -\frac{1}{b} \int_{S} \alpha(t_{1} - t_{2}) dS$$
$$= -\frac{R}{b} \alpha \Delta t \varphi_{k}$$

因角变形 Δ_1 : 与弯矩M: "之正向相反,故为负。将系数和常数项代入该方程式,并引用式(37),则

$$M_{t}'' = \frac{4 \alpha \Delta t CE J_{x}}{b(2 (C + EJ)_{x} + + (C - EJ_{x}) \frac{1}{\varphi_{k}} \sin 2 \varphi_{k})}$$

$$(68)$$

任意截面 (φ) 之内力,

$$M_{xt}" = M_t " \cos \varphi \tag{69}$$

$$T_{zt}'' = -M_t '' \sin \varphi \tag{70}$$

(3)总的温度内力

考虑上述两种情况,均匀升温和相对温 差内力之迭加,即得总的温度内力。仍分为 左右温差和上下温差两种情况。

a. 上下弦管温差总内力

由式(63)至(65)与(67)迭加,即得图19 **■**的最后总内力。

 $N_{\text{opt}} = N_{\text{opt}}' = H_{\text{t}} \cos \varphi$ 将式(62)代入,故

$$N_{\varphi t} = -\frac{\alpha t_0 \beta}{l^2} E J_y \cos \varphi \qquad (71)$$

而 $M_{yt} = M_{yt}' + M_{yt}''$ 由式(62)、(64)、(67)得:

$$M_{yt} = -H_t R(1 - C_1 - cos\phi) + \frac{1}{h} \alpha \Delta t E J_y$$

或

$$M_{yt} = \left[\frac{1}{h} \alpha \Delta t + \frac{\alpha \beta t_0 R}{l^2} \right]$$

$$\times (1 - C_1 - \cos \varphi) \left[EJ_y \right] (72)$$

由式(62)、(65)得:

$$Q_{xt} = Q_{\varphi t}' = -\frac{\alpha \beta t_0}{l^2} E J_y \sin \varphi \qquad (73)$$

b. 左右弦管温差总内力

左右弦管具有温差时,由于均匀升温 (t_0) 引起的轴向内力及剪力与式(71)、(73)相同,其竖向弯矩:

$$M_{yt} = M_{yt}'$$

或
$$M_{yt} = \frac{\alpha \beta t_0 R}{l^2} (1 - C_1 - \cos \varphi) E J_y$$
(74)

水平弯矩:

 $M_{xt} = M_{xt}'' = M_t'' \cos \varphi$ 由式(69)

$$M_{xt} = \frac{4a\Delta t CEJ_x \cos\varphi}{b(2(C+EJ_x)+(C-EJ_x)\times \frac{1}{\varphi_k}\sin^2\varphi_k)}$$
(75)

扭矩: $T_{zt} = T_{zt}'' = -M_t$ "sing" 由式(70)

$$T_{zt} = \frac{-4\alpha \mathcal{L}tCEJ_x \sin\varphi}{b(2(C+EJ_x)+(C-EJ_x)\times \frac{1}{\varphi_k}\sin^2\varphi_k)}$$
(76)

上述各式中 t_0 为截面形心相对于封拱温度的温度变化值,系数 C_1

$$C_1 = 1 - \frac{\sin \varphi k}{\varphi k}$$

2. 温度变形

仍然按两种情况,截面上下温变和左右 温变,分别计算。

(1)截面上下弦管温变引起的变形计算 应用莫尔定理计算拱的变形,取图25为 虚状态。

a. 挠度计算

当图25中P = 1 作用在对应的圆心 角为 φ_0 的圆弧上时,即为计算此截面的虚状态。 因 φ_0 的取值不同,则所得的公式即可用于计算不同截面的变形。

$$\frac{M}{M} = -R[\sin(\varphi_0 + \varphi) - \sin\varphi]
-\frac{N}{N} = -\sin(\varphi_0 + \varphi)
由莫尔定理,不计剪力的影响,$$

$$\Delta_{x} = \frac{1}{B_{y}} \int_{s} \overline{M} M_{yt} dS + \frac{1}{EF} \int_{s} \overline{N} N_{\varphi t} dS$$

$$B_{y} = EJ_{y}$$

则竖向挠度

$$\Delta_{x} = \frac{1}{B_{y}} \int_{\varphi_{0}}^{\varphi_{k}} R(\sin(\varphi_{0} + \varphi)$$

$$-\sin\varphi_{0}) \cdot (H_{t} R(1 - C_{1}))$$

$$-H_{t} R\cos\varphi - \frac{\alpha \Delta t}{h} B_{y} Rd\varphi$$

$$-\frac{1}{EF} \int_{\varphi_{0}}^{\varphi_{k}} \sin(\varphi_{0} + \varphi)$$

imes Ht $\cos \varphi R d \varphi$

积分并化简,可得:

$$\Delta_{x} = \frac{R^{2}}{B_{y}} \left[H_{t}R(1 - C_{1}) - \frac{\alpha \Delta t}{h} B_{y} \right]$$

$$\times \left[\cos 2\varphi_{0} - \cos(\varphi_{0} + \varphi_{k}) \right]$$

$$- (\varphi_{k} - \varphi_{0}) \sin \varphi_{0} \right] - \frac{Ht}{2}$$

$$\times \left(\frac{R^{3}}{B_{y}} + \frac{R}{EF} \right) \left[\sin \varphi_{0} (\varphi_{k} - \varphi_{0}) + \sin \varphi_{k} \cos \varphi_{k} - \sin \varphi_{0} \cos \varphi_{0} \right]$$

$$+ \cos \varphi_{0} \left(\sin^{2}\varphi_{k} - \sin^{2}\varphi_{0} \right) \right]$$

$$+\frac{R^3H_t}{B_y}\sin\varphi_0(\sin\varphi_k-\sin\varphi_0)$$

式中 H_t 由(62)式计算, p_s 为所求 挠 度 截面的圆心角。

b. 转角计算。

由图25b所示虚状态,M=1时,

$$\overline{M} = 1$$
 $\overline{N} = 0$

根据莫尔定理,

$$\theta_{xzt} = \frac{1}{B_y} \int_s \overline{M} M_{yt} dS$$

将 M_{yt} 代入,

$$\theta_{xzt} = \frac{1}{B_y} \int_{\varphi_0}^{\varphi_k} \left[\frac{\alpha \Delta t}{h} B_y - H_t R (1 - C_1 - \cos\varphi) \right] R d\varphi$$

积分化简后可得:

$$\theta_{xzt} = \frac{R}{B_y} \left\{ (\varphi_k - \varphi_0) \left[\frac{\alpha \Delta l}{h} B_y \right] \right\}$$

$$-H_{t} (1-C_{1}) + H_{t}R(\sin\varphi_{k} - \sin\varphi_{0})$$
(78)

(2)截面左右弦管温变引起的变形 计 算 仍用莫尔公式,其相应的虚状态如图26 所示,力矩以矢量表示。

a.挠度计算

图26a, 当H = 1 时,

$$\overline{M} = -R\sin\varphi$$
 $\overline{T} = R(1-\cos\varphi)$

则
$$\Delta_y = \frac{1}{B_x} \int_s \overline{M} M_{xt} dS + \frac{1}{C}$$

$$\times \int_s \overline{T} T_{zt} dS$$

将式(69)代入,积分化简得:

$$\Delta_{y} = \left(\frac{1}{C} - \frac{1}{B_{x}}\right) - \frac{1}{2} R^{2} M_{xt}''$$

$$\times (\sin^{2} \varphi_{k} - \sin^{2} \varphi_{0}) + \frac{1}{C} R^{2} M_{t}''$$

$$\times (\cos \varphi_{k} - \cos \varphi_{0})$$

或

$$\Delta_{y} = R^{2}M_{t} " \left[\frac{1}{2} - \left(\frac{1}{C} - \frac{1}{B_{x}} \right) \right]$$

$$\times (\sin^2 \varphi_k - \sin^2 \varphi_0) + \frac{1}{C} (\cos \varphi_k - \cos \varphi_0)$$
 (79)

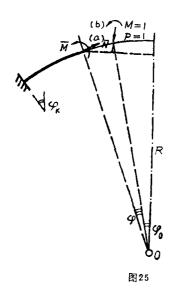
b. 转角计算

取虚状态如图26b, M=1时,

$$\frac{\overline{M} = \cos\varphi}{T} = -\sin\varphi$$

由莫尔定理,

$$\theta_{yzt} = \frac{1}{B_x} \int_{s} \overline{M} M_{xt} dS$$
$$+ \frac{1}{C} \int_{s} \overline{T} T_{zt} dS$$

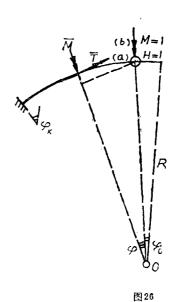


将式(75)、(76)等代入,

$$\theta_{yzt} = \frac{R}{Bx} \int_{\varphi_0}^{\varphi k} \cos \varphi \cdot M_{xt}'' \cos \varphi d\varphi$$
$$+ \frac{R}{C} \int_{\varphi_0}^{\varphi k} (-\sin \varphi) (-M_{xt}'' \times \sin \varphi) d\varphi$$

积分并化简最后可得:

$$\theta_{yzt} = \frac{RM_{xt}''}{2B_x} \left[(1 + \frac{1}{\varepsilon_x}) (\varphi_k - \varphi_0) + \frac{1}{2} (1 - \frac{1}{\varepsilon_x}) (\sin 2\varphi_k - \sin 2\varphi_0) \right]$$



参 考 文 献

- (1) 《建筑结构设计手册》--- 管道支架, 1973。
- (2) П.П.Петров и В.В.Спиридоров, "Надземная прокладка трубопроводов", 1965.
- (3) A. И. Динник, 《拱的稳定性》, 吕子华泽, 1958.
- [4] 四川石油设计院,《跨越设计手册》——输气管线,1974。
- [5] 华北油田指挥部《拱、垂管跨越在华北油田的应用》, 1979。
- [6] H.J.Hartwig, B.Hafke, 《跨径278米的瑞典Askerofjord钢管拱桥》, 载《桥梁译丛》1965, Nei.
- [7] S.P.Timoshenko, 《弹性稳定理论》, 张福范泽, 1958。
- [8] 李国豪:桥梁扭转理论《桁梁桥的扭转、稳定和振动》,1975。
- (9) 南京工学院力学教研组:《结构力学》。
- [10] Я.Д.Лившиц: 《飞机结构力学》, 许玉赞等译, 1954。
- [11] G.Burgermeister, H.Steup, 《稳定理论》 (下), 王生传等译, 1974.
- (12) 李国豪, 《桥梁结构的稳定与振动》,
- [13] F.Bleich 《金属结构的屈曲强度》, 同济大学钢木结构教研组译, 1965.
- 〔14〕 交通部公路设计院编:《拱桥设计计算手册》。