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Abstract: [Objective] To improve the accuracy of internal corrosion rate predictions for natural gas gathering and transportation pipelines in
marine environments, evaluate their residual strength, develop anti-corrosion measures, and ensure their safe operation, a corrosion rate
prediction model based on Kernel Principal Component Analysis (KPCA), Improved Hunt-Prey Optimizer (IHPO), and Kernel Extreme
Learning Machine (KELM) was proposed. [Methods] Using the internal corrosion data from a natural gas gathering and transportation
pipeline in the South China Sea, KPCA was first employed to extract features from corrosion-influencing factors, eliminate the impact of
redundant data on the prediction results, and determine the input variables. Second, population initialization was performed using Circle
mapping. Cauchy mutation was applied to enhance the local development capability of the Hunter-Prey Optimization (HPO) algorithm, while
opposition-based learning was utilized to improve its global search capability. The IHPO was then employed to optimize the regularization
coefficient (C) and the kernel function parameter (y) of the KELM. Finally, corrosion rate predictions were made using Matlab, and the
results of the KPCA-IHPO-KELM model were compared with those of the KELM, KPCA-KELM, and KPCA-HPO-KELM models.

[Results] The results indicated that numerous initial influencing factors were present in the case. A total of three principal components were
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extracted using the KPCA algorithm, which effectively eliminated the influence of redundant data while preserving the main features of the

original dataset, thus reducing prediction error. The optimal C and y for the KELM model, determined by IHPO, were 3.83 and 0.01,

respectively, at which the model achieved the best prediction performance. After feature extraction and algorithm improvement, the

predictions of the KPCA-IHPO-KELM model closely aligned with the actual corrosion rate, demonstrating superior performance. Its root

mean square error (RMSE), mean absolute error (MAE), and determination coefficient (R%) were 0.0245, 0.0204, and 0.9976, respectively.

Compared to the other three models, it achieved the highest prediction accuracy and the lowest mean error. [Conclusion] The proposed

KPCA-IHPO-KELM combined prediction model for corrosion rate exhibits excellent prediction performance. It offers a new approach for

predicting the internal corrosion rate of natural gas gathering and transportation pipelines in marine environments, providing valuable

insights for their operation and maintenance management, and risk early-warning systems. (3 Figures, 6 Tables, 27 References)

Key words: natural gas gathering and transportation pipeline, marine environment, internal corrosion rate, Kernel Principal Component

Analysis, Improved Hunt-Prey Optimizer, KELM model
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Table 1 Comparison of four algorithm fitting performance test results
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Fig.2 Flow chart for predicting the internal corrosion rate of natural gas gathering and transportation pipelines
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Table 2 Internal corrosion data of the natural gas gathering and transportation pipeline

AN VA S B TR BT, T b o 3%
1 64.67 0.67 1812.28 181.23 0.62 4.96 22.52 0.080 2.73
2 64.67 0.67 1812.28 181.23 0.62 4.96 12.30 0.040 2.73
3 64.51 0.74 22717.03 227.70 0.80 4.89 1.84 0 2.73
4 64.02 0.57 2520.57 252.06 0.76 4.87 1.60 0.002 2.86
60 38.42 0.82 2189.61 218.96 0.59 4.96 1.00 0.050 3.11
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Fig. 3 Scree plot of principal components for the internal
corrosion data of the natural gas gathering and
transportation pipeline
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Table 3 Eigenvector matrix of principal components for the internal corrosion data of the natural gas gathering and
transportation pipeline

s e - AT, " BET BY R /)/Pa
oS iREIC e JEJikPa CO, 7pH/kPa LfALE/ (mes™) pH fH :

A M
15y 1 028190 -027307  0.52949 0.729 81 -0.273 22 -026361 025756  —0.27342
B2 089012  0.07258  0.404 04 0.307 40 0.075 52 008132 002866  0.01723
%55 3 021815  0.12651 032517 0.528 28 0.199 77 -0.88824  —0.01047  —0.12279

R4 BREGNRRASEREBEARFMEIER
Table 4 Internal corrosion data of the natural gas gathering
and transportation pipeline after dimensionality reduction

o Wl 5
FrEs FH 1 THA 2 ERS 3
1 —0.049 6 -0.017 8 0.005 4
2 —0.049 6 —-0.017 8 0.005 4
3 0.447 4 0.082 6 0.1207
4 0.5727 0.102 4 0.1357
60 —-0.049 6 -0.017 8 0.005 4
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Table 5 Prediction results and relative errors of different internal corrosion rate prediction models

JE o R Ji& b R F A /(mmea ™) FXT R ZE
WkReA SEBRfE/ KPCA- KPCA-HPO- KPCA-IHPO- KPCA-  KPCA-HPO- KPCA-IHPO-
(mmah  FEIMOepm KELM KELM KELM KELM KELM KELM
1 2.73 28550  2.8536 27925 2.7559 45788% 4.5275%  2.2894% 0.947 1%
2 2.80 29192 29048 2.850 5 2.798 2 42585% 3.7437%  1.8034% 0.064 2%
3 2.79 28473 2.8499 2.8247 2.8050 2.0550% 2.1463%  12422% 0.5383%
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WaREA SEBR{E/ KPCA- KPCA-HPO- KPCA-IHPO- KPCA-  KPCA-HPO- KPCA-IHPO-
(mmah  FEIMOepm KELM KELM KELM KELM KELM KELM
4 2.79 28843 29190 2.8659 2.806 3 33811% 4.6230%  2.7209% 0.583 8%
5 3.11 28550 29727 3.018 1 3.0711 8.1993% 4.4138%  2.9546% 1.2519%
6 2.64 27827 27827 27355 2.6855 54067% 54067%  3.6187% 1.7223%
7 2.70 27689  2.7689 2.727 1 27229 2.5518% 2.5518%  1.0021% 0.849 2%
8 2.84 28760 29025 2.856 1 2.8470 12687% 2.2014%  0.566 8% 0.2457%
9 2.86 27694 27694 2.8302 2.8552 3.1669% 3.1688%  1.0410% 0.168 5%
10 2.79 28459 28494 2.8410 2.8158 2.0042% 2.1302%  1.8269% 0.925 8%

55 HoAth 3 R AL AH b, KPCA-THPO-KELM £ #
1 T &5 S 5 S B AE B R, R0 B KR 2N
1.722 3%, T & /N i 2L H 0.0642% . W] W, KPCA-
IHPO-KELM #5584 T 280 5 55 - o
1§ F ¥ 5 M2 % ( Root Mean Square Error, RMSE).
S48 557 % 22 (Mean Absolute Error, MAE). 1 5€ &3
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PR 0 B ) WE B PE (R 6). AT AL, 5 KELM. KPCA-
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KELM £ 284 il U 25 53 ) RMSE 73 Jil [§ ik 9.58%.
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