
 

引文：骆正山，陈思思，高懿琼. 海洋环境下天然气集输管道内腐蚀速率预测[J]. 油气储运，2025，44（10）：1140−1148.
LUO Zhengshan, CHEN Sisi, GAO Yiqiong. Internal corrosion rate prediction of natural gas gathering and transportation pipelines in marine
environments[J]. Oil & Gas Storage and Transportation, 2025, 44(10): 1140−1148. 

海洋环境下天然气集输管道内腐蚀速率预测
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摘要： 【目的】为了提高天然气集输管道在海洋环境下内腐蚀速率预测的准确性，评估管道剩余强度，制定防腐措

施，维护管道的安全运行，建立了一种基于核主成分分析法（Kernel Principal Component Analysis, KPCA）、改进猎

人猎物算法（Improved Hunt-Prey Optimizer, IHPO）及核极限学习机（Kernel Extreme Learning Machine, KELM）的
腐蚀速率预测模型。【方法】以南海某天然气集输管道内腐蚀数据为例，首先利用 KPCA提取腐蚀影响因素特征，

消除冗余数据对预测结果的影响，确定输入变量；其次采用 Circle映射进行种群初始化，使用柯西变异增强猎人

猎物算法（Hunter-Prey Optimization, HPO）的局部开发能力，通过反向学习提高 HPO全局搜索能力，用 IHPO优

化 KELM的正则化系数 C与核函数参数 γ；最后使用 Matlab软件对腐蚀速率进行预测，并对比 KPCA-IHPO-
KELM模型与 KELM、KPCA-KELM、KPCA-HPO-KELM模型的预测结果。【结果】案例中初始影响因素较多，使

用 KPCA提取出 3个主成分，在保留原始数据主要特征的情况下，有效消除了冗余数据影响，降低了预测误差；

通过 IHPO确定 KELM模型的最优正则化系数 C与核函数参数 γ分别为 3.83、0.01，此时模型预测效果最佳；

经特征提取与算法改进后的 KPCA-IHPO-KELM模型的预测结果与实际腐蚀速率更接近，性能更优，其均方根

误差、平均绝对误差、决定系数 R2
分别为 0.024 5、0.020 4、0.997 6，与其他三种模型相比预测精度最高、平均误

差最小。【结论】新建的 KPCA-IHPO-KELM腐蚀速率组合预测模型具有良好的预测性能，可为后续海洋环境下

天然气集输管道的内腐蚀速率预测提供新方法，从而为海洋环境下天然气集输管道的运维管理与风险预警提供

参考。（图 3，表 6，参 27）
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Abstract: [Objective] To improve the accuracy of internal corrosion rate predictions for natural gas gathering and transportation pipelines in

marine  environments,  evaluate  their  residual  strength,  develop  anti-corrosion  measures,  and  ensure  their  safe  operation,  a  corrosion  rate

prediction  model  based  on  Kernel  Principal  Component  Analysis  (KPCA),  Improved  Hunt-Prey  Optimizer  (IHPO),  and  Kernel  Extreme

Learning  Machine  (KELM)  was  proposed.  [Methods]  Using  the  internal  corrosion  data  from  a  natural  gas  gathering  and  transportation

pipeline in  the South China Sea,  KPCA was first  employed to extract  features  from corrosion-influencing factors,  eliminate  the impact  of

redundant  data  on  the  prediction  results,  and  determine  the  input  variables.  Second,  population  initialization  was  performed  using  Circle

mapping. Cauchy mutation was applied to enhance the local development capability of the Hunter-Prey Optimization (HPO) algorithm, while

opposition-based learning was utilized to improve its global search capability. The IHPO was then employed to optimize the regularization

coefficient  (C)  and  the  kernel  function  parameter  (γ)  of  the  KELM.  Finally,  corrosion  rate  predictions  were  made  using  Matlab,  and  the

results  of  the  KPCA-IHPO-KELM  model  were  compared  with  those  of  the  KELM,  KPCA-KELM,  and  KPCA-HPO-KELM  models.

[Results] The results indicated that numerous initial influencing factors were present in the case. A total of three principal components were
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extracted using the KPCA algorithm, which effectively eliminated the influence of redundant data while preserving the main features of the

original  dataset,  thus  reducing  prediction  error.  The  optimal C  and  γ  for  the  KELM  model,  determined  by  IHPO,  were  3.83  and  0.01,

respectively,  at  which  the  model  achieved  the  best  prediction  performance.  After  feature  extraction  and  algorithm  improvement,  the

predictions  of  the  KPCA-IHPO-KELM model  closely  aligned with  the  actual  corrosion rate,  demonstrating superior  performance.  Its  root

mean square error (RMSE), mean absolute error (MAE), and determination coefficient (R2) were 0.0245, 0.0204, and 0.9976, respectively.

Compared  to  the  other  three  models,  it  achieved  the  highest  prediction  accuracy  and  the  lowest  mean  error.  [Conclusion]  The  proposed

KPCA-IHPO-KELM combined prediction model for corrosion rate exhibits excellent prediction performance. It  offers a new approach for

predicting  the  internal  corrosion  rate  of  natural  gas  gathering  and  transportation  pipelines  in  marine  environments,  providing  valuable

insights for their operation and maintenance management, and risk early-warning systems. (3 Figures, 6 Tables, 27 References)

Key words: natural  gas  gathering  and  transportation  pipeline,  marine  environment,  internal  corrosion  rate,  Kernel  Principal  Component

Analysis, Improved Hunt-Prey Optimizer, KELM model

随着海洋油气田的勘探与开发，海洋环境下集输

管道的应用越来越广泛，尤其在特殊条件下，其具备

单相输送管道所不具备的优势
[1]
。集输管道中存在气

液两相，可能导致内腐蚀，进而引发安全事故与经济

损失。因此，准确预测腐蚀速率对集输管道安全与维

护至关重要。

国内外众多学者已针对天然气集输管道内的腐

蚀问题开展了多方面的研究。葛扬志等
[2]
使用 WG-

ICDA（Wet  Gas  Internal  Corrosion  Direct  Assessment）

方法评估天然气集输管道中 CO2 的腐蚀特性，改进了

NORSOK（Norsk Sokkels  Konkurranseposisjon）模型以

提高预测精度，但该模型仅适用于含 CO2 的湿气腐蚀。

谢飞等
[3]
分析了 pH值及 CO2 分压对管道内腐蚀的影

响。陈铁等
[4]
运用 OLGA软件探讨温度、压力及管道直

径等参数对腐蚀的影响，但因实际管道内环境复杂，其

研究全面性不足。蒋宏业等
[5]
将 Nesic模型作为基础，

加入腐蚀产物膜影响因子，提出新预测模型，但仅适用

于 CO2 腐蚀预测。这些传统方法由于其局限性无法满

足实际需求，应用机器学习算法逐渐成为主流方法。

1998年，李小红等
[6]
提出使用 BP网络预测油气管道与

设备的腐蚀情况，避免了探索各种因素对腐蚀影响规律

的复杂过程，为机器学习算法在管道腐蚀速率预测中的

应用奠定了基础。Abbas等[7]
利用神经网络预测腐蚀速

率，但训练效率低，效果不佳。骆正山等
[8]
将灰色关联

分析（Grey Relational Analysis, GRA）与随机森林回归

（Random Forest Regression, RFR）相结合，形成 GRA-

RFR模型，但 RFR易过拟合，需进一步研究特征选择

与回归树数量。Li等 [9]
结合 KPCA（Kernel  Principal

Component  Analysis）与  BRANN（Bayesian-Regularized

Artificial Neural Network）技术，建立数据驱动的海洋

集输管道腐蚀退化预测模型，但预测精度不稳定。郑度

奎等
[10]
对人工鱼群算法进行自适应改进，建立 IAFSA-

GRNN（Improved  Adaptive  Fish  Swarm  Algorithm-

Generalized Regression Neural Network）模型用于 X65

钢的内腐蚀速率预测，但广义回归神经网络在多维输入

时存在泛化能力弱的问题。Xu等[11]
引入分解算法消除

冗余噪声，采用改进粒子群优化算法优化支持向量机进

行集输管道内腐蚀速率预测，但粒子群优化算法对于复

杂问题的优化能力有限，且支持向量机存在计算速度慢、

容易过度拟合的问题。赵年峰等
[12]
利用人工蜂群算法

动态优化 GM（1，N）模型的背景值，从而建立优化的

GM（1，N）模型预测腐蚀速率，以提高预测精度，但在

中长期预测上表现不佳。为了进行腐蚀速率预测，肖荣

鸽等
[13]
引入 TSO（Tuna Swarm Optimization）算法优化

BPNN（Back Propagation Neural Network）模型，但其预

测效果仍有进一步提高的空间。综上，现有机器学习预

测模型仍旧存在预测精度不足、预测误差不稳定、训练

效率低、容易过度拟合等方面的局限性。

在此，提出一种结合核主成分分析法、改进猎人

猎物算法（Improved Hunt-Prey Optimizer, IHPO）与核

极限学习机（Kernel Extreme Learning Machine, KELM）

的新方法，建立 KPCA-IHPO-KELM模型预测腐蚀速

率。采用 KPCA算法提取主要影响因素成分，以减少

数据冗余与干扰，降低预测误差；利用 Circle映射初始

化种群、柯西变异更新猎物位置与反向学习扩展搜索

范围对猎人猎物算法（Hunt-Prey Optimizer, HPO）进行

改进，增强算法的局部开发与全局搜索能力；基于改

进的 IHPO算法寻求 KELM模型的最优正则化系数 C
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与核参数 γ，提升预测效率与准确性。最后通过南海某

天然气集输管道的内腐蚀数据验证该模型的可行性与

科学性。

 1    理论基础

 1.1    KPCA

为了更有效地处理天然气集输管道腐蚀原始数据

并去除冗余特征，采用 KPCA进行降维，选择主要特

征作为输入，降低预测模型的计算复杂度，提高泛化

能力，减少过拟合风险，提升预测精度。KPCA是在主

成分分析法（Principal Component Analysis, PCA）基础

上引入核函数，将低维空间的数据映射到高维空间中，

再使用 PCA 进行降维处理，通常选取贡献率高于

85％的主成分
[14−15]
。

 1.2    猎人猎物算法

HPO是 2022年由 Naruei等提出的智能优化算法，

灵感源自对动物狩猎过程的模拟，该算法具有快速收

敛、强大的寻优能力等优点
[16]
。算法中猎人猎物的选

择原则如下：

X (k+1) =
ß

X (k)+0.5
[
2 HZPpos−X (k)+2(1−H)Zµ (d)−X (k)

]
, R2 < β

T pos+HZcos(2 πR1)
[
Tpos−X (k)

]
, R2 ⩾ β

（1）

式中：k为当前迭代次数；X (k)为猎人或猎物当前位置；

X (k+1)为迭代更新后的位置；H为平衡参数；Z为自

适应参数；R1、R2 为 [0，1]范围内的随机数；β为调节

参数，取 0.1；Ppos 为猎物位置；d为优化问题中的第 d

个维度；μ (d)为当前迭代时刻整个种群在第 d维空间

中的平均位置；Tpos 为全局最优位置；cos函数根据 R1

值的变化，用于在不同半径与角度下，为下一个猎物

寻找全局最优位置。

若 R2＜β，为猎人搜索，下一位置通过猎人位置

更新；若 R2≥β，为猎物搜索，下一位置通过猎物位置

更新
[17]
。

 1.3    KELM

在极限学习机（Extreme Learning Machine, ELM）

的核心理念之上，KELM通过引入核函数对 ELM的

隐含层特征映射进行优化，在提升模型预测性能的同

时保留了 ELM的优势
[18]
。KELM无需确定隐藏层节

点数，通过选择合适的正则化系数 C与核参数 γ即可

计算输出权值
[19]
。当 C取值过高时易引发模型的过拟

合现象；相反，C取值偏小则会造成模型学习能力不足

而产生欠拟合问题；γ取值决定了输入空间至特征空

间的映射过程，同时会显著改变特征空间本身的拓扑

属性与数学特性。

 2    IHPO 算法

在使用 HPO算法的过程中，算法的表现受到初

始种群分布的影响，同时还可能面临收敛速度缓慢且

易陷入局部最优解的问题。因此，从以下 3个方面对

猎人猎物算法进行改进，以提高算法稳定性。

 2.1    Circle 映射初始化改进

相比传统随机方法，Circle映射生成的种群更均

匀地分布于解空间，避免局部最优解，从而增强全局

优化能力
[20]
。其计算式如下：

numq+1 =mod
ï

numq+0.2− 0.5
2π

sin
(
2 πnumq

)
,1
ò
（2）

q式中：numq 为第    个混沌序列数；mod(a,b)为 a对 b

的取余运算。

为验证 Circle映射的性能，生成 1  000个序列

数值（图 1）。结果显示，采用 Circle映射生成的混沌

序列数值在 0～1之间的分布具备良好的遍历性与均

匀性。
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图 1　Circle 映射序列数值分布图
Fig. 1　Distribution of Circle mapping sequence values

 2.2    柯西变异改进

引入柯西变异算子改进猎物位置更新公式，该算

子基于柯西分布，旨在为潜在最优猎物的局部区域引

入随机扰动，增强算法的局部搜索能力。通过适度的

随机性，柯西变异算子帮助猎物更广泛地探索局部空
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间，防止陷入局部最优解。这一改进优化了猎物位置

更新策略，提升了算法在复杂问题中的局部开发能力，

从而增强了群智能优化算法的实际应用效果
[21]
。柯西

概率密度函数计算式如下：

g (y;y0,δ) =
1

πδ
ï

1+
(y− y0

δ

)2
ò （3）

式中：y为实数；y0 为位置参数；δ为随机变量，且 δ＞0。

取 y0 = 0，δ = 1，此时为标准柯西分布：

G (y) =
1
2
+

1
π

arctan(y) （4）

柯西分布具有更均匀的整体分布特性，平缓的对

称轴最大值与较大的拖尾概率使其适合扩展搜索范围。

新的猎物位置更新公式如下：

X' (k) = X (k)+X (k)G (y) （5）

式中：X ' (k)为经过柯西变异改进后的猎物位置。

通过局部扰动，在搜索空间中引入随机性，打破

当前解的稳定性，使得算法能够探索新的方向，从而

发现更优的解。

 2.3    反向学习改进

在 HPO中，猎物因处于较差位置，躲避猎人时效

果不佳。为提高全局搜索能力，利用由式（5）变异后的

猎物位置引导种群进行反向学习，从而扩展搜索范围，

避免无效时间浪费，确保算法收敛性与改善种群分布
[22]
。

其更新公式如下：

X' (k+1) = ub+ lb− rand(0,1) X (k+1) （6）
式中：X ' (k+1)为经过反向学习改进后的猎物位置；ub、

lb 分别为当前测试函数的上限、下限；rand(0,1)为区

间 [0,1]的随机数。

更新后猎物在躲避猎人时拥有更广阔的移动范围，

并具有跳出局部最优的能力。

 2.4    收敛性分析

为验证改进后猎人猎物算法的性能，将 IHPO与

HPO、灰狼优化算法（Grey Wolf Optimizer, GWO）、鲸

鱼优化算法（Whale Optimization Algorithm, WOA）在

Sphere、Schwefel 1.2、Ackley基准测试函数下进行独

立重复测试。为保证公平性，算法种群规模均设置为

30，最大迭代次数设置为 500。其中 Sphere与 Schwefel

1.2为单峰函数，Ackley为多峰函数，单峰函数有且仅

有一个全局最优值 0，在全局最优值附近，有多个局部

最优值，若算法搜索能力不强，则会收敛到局部最优值，

因此单峰函数可用来检测算法的收敛速度与精度
[23–24]
；

多峰函数有多个局部收敛峰值，可用来检测算法的综

合寻优能力
[25–26]
。对比 4种算法在不同函数下的适应

度值，即最优值、平均值、标准差，其中最优值与平均

值用来检验寻优能力，标准差检验稳定性（表 1）。结

果显示 IHPO在所有算法中的寻优值为最低、效果

最好，说明改进算法可以提高模型的寻优能力与稳

定性。
 
 

表 1　4 种算法适应度测试结果对比表
Table 1　Comparison of four algorithm fitting performance test results

算法
适应度最优值 适应度平均值 标准差

Sphere Schwefel 1.2 Ackley Sphere Schwefel 1.2 Ackley Sphere Schwefel 1.2 Ackley

HPO 1.10×10−187 2.35×10−160 4.44×10−16 5.36×10−174 3.19×10−146 4.44×10−16 0 1.67×10−145 0

GWO 4.89×10−29 1.99×10−8 6.79×10−14 1.97×10−27 4.27×10−5 1.07×10−13 3.81×10−27 1.65×10−4 2.04×10−14

WOA 1.62×10−90 1.39×104 4.44×10−16 6.59×10−73 3.61×104 4.47×10−15 2.43×10−72 1.23×104 2.91×10−15

IHPO 0 0 4.44×10−16 0 0 4.44×10−16 0 0 0

 
 3    模型构建

KPCA-IHPO-KELM模型用于管道内腐蚀速率预

测流程（图 2）如下。

1）数据预处理。设有 n组腐蚀数据样本 (xi，yi)、

m个影响因素，其中 i为 [1， n]；影响因素 xij 为模型输

入，其中 j为 [1，m]；腐蚀速率 yi 为输出。按式（7）处理

原始数据：

x∗i j =
xi j− x jmin

x jmax− x jmin
（7）

x∗i j

xi j

式中：   为经数据预处理后的第 i组数据的第 j个因

素；    为第 i组数据的第 j个因素；xjmax、xjmin 分别

为第 j个因素的最大值、最小值。

2）KPCA算法影响因素降维。首先将处理后的原

始数据作为 KPCA的数据空间，再利用径向基函数计

算核矩阵 K，并按式（8）提取累计贡献率超过 85％的

前 p项主成分，将数据从 m维降至 p维，其输出结果

骆正山，等： 海洋环境下天然气集输管道内腐蚀速率预测 Inspection & Integrity ||  检测与完整性

yqcy.pipechina.com.cn 1143



X∗ =
{

x∗ic |i = 1，2， · · ·，n； c = 1，2， · · ·，p
}

为  ，且

p≤m。再将 KPCA处理后的数据归一化，并随机划分

训练集与测试集。

vφ(xi) =
n∑

i=1

wiφ(xi)φ(x) =
n∑

i=1

aiK(xi, x) （8）

φ

φ

式中：v为新样本的特征向量；φ(x)为输入空间样本的

非线性映射结果；  (xi)为训练集第 i个样本通过非线

性映射函数转换后的高维特征向量；x为任意样本映

射到同特征空间的向量；wi 为  (xi)的权值；K(xi, x)为

核矩阵。

3）IHPO算法参数优选。先进行初始化，设置

IHPO的种群数量、最大迭代次数等参数，按式（2）使

用 Circle映射优化初始种群，计算初始位置适应度值，

并记录最优位置，开始算法迭代。然后，根据 R2 与 β的

大小判断是猎人还是猎物搜索，若为猎人，按式（1）进

行猎人的位置更新；若为猎物，则根据式（1）与引入柯

西变异后的式（5）对猎物的位置进行更新，计算适应度

值，并记录最优位置。再根据式（6）由当前迭代次数的

全局最优解引导种群完成动态反向学习，计算适应度值，

更新算法迭代次数，并与上一代最优位置进行对比，若

优于上一代，则更新当前最优值。检查是否已经达到最

大迭代次数，如果尚未达到设定的迭代上限，则继续进

行迭代与优化；如果已经达到，则直接输出最优解。

4）KELM模型训练。将最优解作为最优正则化系

数与核参数，代入 KELM模型对训练数据进行系统全

面学习。

5）内腐蚀速率预测及分析。采用 KPCA-IHPO-

KELM模型对测试数据集进行预测，并分析预测结果。

 4    模型验证

 4.1    数据准备

中国南海某天然气集输管道长 5.5 km，于 2009年

6月运行，设计寿命 20年。该管道不同条件下的腐蚀

速率由专业机构确定
[27]
，选取 60个位置点数据进行研

究（表 2）。

 

开始

数据预处理

KPCA 算法影响因素降维

IHPO 算法参数优选

KELM 模型训练

内腐蚀速率预测及分析

结束

根据 Circle 混沌映射初始化 n 个种群的位置

计算适应度值

R2≥β

根据改进后的猎物位置更新公式更新位置 根据猎人捕猎机制更新位置

否是

计算适应度值，引导种群完成反向学习，更新算法迭代次数

达到最大迭代次数

输出最优参数

是

否

 

图 2　天然气集输管道内腐蚀速率预测流程图
Fig. 2　Flow chart for predicting the internal corrosion rate of natural gas gathering and transportation pipelines

 

表 2　某天然气集输管道内腐蚀数据表
Table 2　Internal corrosion data of the natural gas gathering and transportation pipeline

位置序号 温度/℃ 持液率
压力/
kPa

CO2 分压/
kPa

流体流速/
（m∙s−1）

pH值
壁面剪应力/Pa 腐蚀速率/

（mm∙a−1）液相 气相

1 64.67 0.67 1 812.28 181.23 0.62 4.96 22.52 0.080 2.73
2 64.67 0.67 1 812.28 181.23 0.62 4.96 12.30 0.040 2.73
3 64.51 0.74 2 277.03 227.70 0.80 4.89 1.84 0 2.73
4 64.02 0.57 2 520.57 252.06 0.76 4.87 1.60 0.002 2.86
… … … … … … … … … …
60 38.42 0.82 2 189.61 218.96 0.59 4.96 1.00 0.050 3.11
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 4.2    特征提取

根据 KPCA计算步骤，采用 Matlab2023b软件对

各影响因素进行主成分提取；选择 rbf函数作为核函

数，计算主成分特征值及累计贡献率（图 3）。可见，前

3项成分的累计贡献率已超过 85％，故将前 3个成分

作为影响腐蚀的关键指标，用以预测天然气集输管道

的内腐蚀速率。由 KPCA处理中主成分特征向量矩阵

（表 3）可见，主成分 1、主成分 2、主成分 3分别与

CO2 分压、温度、pH值相关性较大，这分别体现了腐

蚀性气体、运行方式以及水相溶液对管道腐蚀的作用。

经 KPCA处理后，可得到降维后的天然气集输管道内

腐蚀数据（表 4）。
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图 3　某天然气集输管道内腐蚀数据主成分碎石图
Fig. 3　Scree plot of principal components for the internal

corrosion data of the natural gas gathering and
transportation pipeline

 
 

表 3　某天然气集输管道内腐蚀数据主成分特征向量矩阵表
Table 3　Eigenvector matrix of principal components for the internal corrosion data of the natural gas gathering and

transportation pipeline

成分序号 温度/℃ 持液率 压力/kPa CO2 分压/kPa 流体流速/（m∙s−1） pH值
壁面剪应力/Pa

液相 气相

成分 1 0.281 90 −0.273 07 0.529 49 0.729 81 −0.273 22 −0.263 61 −0.257 56 −0.273 42

成分 2 −0.890 12 0.072 58 0.404 04 0.307 40 0.075 52 0.081 32 0.028 66 0.017 23

成分 3 0.218 15 0.126 51 0.325 17 0.528 28 0.199 77 −0.8882 4 −0.010 47 −0.122 79
 
  

表 4　降维后的某天然气集输管道内腐蚀数据表
Table 4　Internal corrosion data of the natural gas gathering

and transportation pipeline after dimensionality reduction

位置序号
降维结果

主成分 1 主成分 2 主成分 3

1 −0.049 6 −0.017 8 0.005 4
2 −0.049 6 −0.017 8 0.005 4
3 0.447 4 0.082 6 0.120 7
4 0.572 7 0.102 4 0.135 7
… … … …
60 −0.049 6 −0.017 8 0.005 4 

 4.3    模型训练与结果分析

对建立的 KPCA-IHPO-KELM模型进行训练，将

通过 KPCA方法提取出的 3个主成分作为模型的输

入集，对应预测的天然气集输管道内腐蚀速率作为输

出；同时，从降维后的数据集中随机选取 50组作为训

练集，剩余的 10组作为测试集。

训练过程中 IHPO算法的初始参数设置如下：

随机设置种群数量 pop=30、最大迭代次数 Tmax=100、

搜索参权范围的上界 lb=[1e
−2
，1e−2]、下界 ub=[10，10]，

待寻优的参数有两项，设置 dim=2。通过 100次迭

代优化运行，自动寻找 KELM模型最优的正则化

系数 C与核参数 γ，得出的最优参数分别为 3.83、

0.01，并将最优参数代入 KELM模型中进行腐蚀速

率预测。

为了验证所建立模型的有效性，选择 KELM模型、

KPCA-KELM模型及 KPCA-HPO-KELM模型作为对

比模型，对天然气集输管道内腐蚀速率进行预测（表 5）。

为保证公平性，HPO算法参数设置与 IHPO相同，

HPO寻优得到的最优参数分别为 1.00、0.03。
 

表 5　不同内腐蚀速率预测模型预测结果及相对误差表
Table 5　Prediction results and relative errors of different internal corrosion rate prediction models

测试样本

腐蚀速率

实际值/
（mm∙a−1）

腐蚀速率预测值/（mm∙a−1） 相对误差

KELM
KPCA-
KELM

KPCA-HPO-
KELM

KPCA-IHPO-
KELM

KELM
KPCA-
KELM

KPCA-HPO-
KELM

KPCA-IHPO-
KELM

1 2.73 2.855 0 2.853 6 2.792 5 2.755 9 4.578 8％ 4.527 5％ 2.289 4％ 0.947 1％

2 2.80 2.919 2 2.904 8 2.850 5 2.798 2 4.258 5％ 3.743 7％ 1.803 4％ 0.064 2％

3 2.79 2.847 3 2.849 9 2.824 7 2.805 0 2.055 0％ 2.146 3％ 1.242 2％ 0.538 3％
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与其他 3种模型相比，KPCA-IHPO-KELM模型

的预测结果与实际值更接近，其预测的最大误差为

1.722 3％，而最小误差仅为 0.064 2％。可见，KPCA-

IHPO-KELM模型预测效果最好。

使用均方根误差（ Root Mean Square Error, RMSE）、

平均绝对误差（Mean Absolute Error, MAE）、决定系数

R2
这 3种性能指标进一步测试 KPCA-IHPO-KELM

模型性能的准确性（表 6）。可见，与 KELM、KPCA-

KELM、KPCA-HPO-KLEM模型相比，KPCA-IHPO-

KELM模型预测结果的 RMSE分别降低 9.58％、

7.85％、3.5％，MAE分别降低 8.41％、7.75％、3.31％，

决定系数 R2 分别提高 71.14％、31.78％、4.64％。因此，

在天然气集输管道内腐蚀速率预测方面，KPCA-IHPO-

KELM组合模型的性能优于其他 3种模型，从而也验

证了特征提取与算法改进对模型预测性能的提升。
  

表 6　不同内腐蚀速率预测模型预测结果性能指标值表
Table 6　Performance indicator values for the prediction

results of different internal corrosion rate prediction models

预测模型 RMSE MAE R2

KELM 0.120 3 0.104 5 0.286 1
KPCA-KELM 0.103 0 0.097 9 0.679 7

KPCA-HPO-KELM 0.059 6 0.053 5 0.951 2
KPCA-IHPO-KELM 0.024 5 0.020 4 0.997 6

 5    结论

通过对 KPCA-IHPO-KELM组合模型研究，采

用特征提取方法与算法改进策略提升海洋环境下天

然气集输管道内腐蚀速率的预测精度，且经过实例

验证。

1）针对冗余输入指标影响模型预测效果问题，采

用 KPCA算法进行特征提取，能有效捕获原始数据集

的主要特征，保证预测准确性。

2）通过 IHPO算法对 KELM模型的正则化系数

C、核参数 γ进行寻优，与 KPCA-HPO-KELM模型对

比发现，采用 Circle映射、柯西变异及反向学习改进

HPO算法，并将改进后的 IHPO算法应用于优化核极

限学习机模型，其准确性更高、预测效果更好。

3）与 KELM、 KPCA-KELM、 KPCA-HPO-KLEM

模相比，新建立的 KPCA-IHPO-KELM模型预测精度

更高，可为后续海洋环境下天然气集输管道风险评估

提供参考。在工程实践中，管道腐蚀常呈现多因素耦

合作用，鉴于此，后续研究可建立管道腐蚀标准化数

据库，基于大样本量数据集提升模型泛化能力。
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