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Method for scenario construction and decoupling of concentration field in
buried natural gas pipeline leakage

QI Sheng', WU Junyao', SONG Xingwang', HAN Meng’, JING Qi', LI Yuntao'
1. College of Safety and Ocean Engineering, China University of Petroleum (Beijing); 2. PipeChina West Pipeline Co., Ltd.

Abstract: [Objective] As a crucial component of the global energy supply system, natural gas has seen its application scale continuously expand amid
the ongoing transition to clean energy. However, with the accelerated pace of pipeline installation and the increase in service life, safety concerns arising
from pipeline leaks have become increasingly prominent. Accidents involving natural gas leaks can lead to severe fires and explosions, posing direct
threats to the lives and property of nearby residents. Therefore, there is an urgent need for an effective method for scenario construction and
concentration field prediction related to natural gas pipeline leaks to enhance emergency response capabilities for such leaks. [Methods] Based on the
pipeline fracture control test field, a real-scenario drill platform for high-pressure and large-diameter natural gas pipeline leakage was developed. This
platform is capable of simulating complex leakage scenarios with a burial depth of no less than 1.5 meters, a pipe diameter of no less than 1,422 mm,
and a pressure-bearing capacity of no less than 14 MPa. Using the real data obtained from this platform, a three-dimensional computational fluid

dynamics (CFD) model for pipeline leaks was established in conjunction with the Brinkman equation, enabling high-precision simulation of the

1130 L_© Gl Ufikia ) gmii i (CC BY-NC-ND 4.0)



https://doi.org/10.6047/j.issn.1000-8241.2025.10.005
https://doi.org/10.6047/j.issn.1000-8241.2025.10.005
https://doi.org/10.6047/j.issn.1000-8241.2025.10.005

TR, S5 B IR IR U T ML 155 57 A 2 5 VR BE I R U 1

diffusion and evolution process of leaked gas from buried pipelines. On this basis, a 3D concentration field decoupling method based on the algebraic
iterative reconstruction technique was proposed. By establishing the mapping relationship between two-dimensional monitoring data and three-
dimensional spatial concentration distribution, the three-dimensional reconstruction of the field domain was realized, addressing the issue of insufficient
generalization ability in traditional models. [Results] Leveraging the data provided by the real-scenario drill platform, the typical leakage scenarios of
buried natural gas pipelines were accurately reproduced. In various leakage scenarios, the gas diffusion range in vertically upward leaks was significantly
larger than that in leaks in other directions. In the initial stage of leakage, the momentum of the high-speed jet dominated the diffusion process, resulting
in the fastest diffusion rate in the horizontal direction. In the later stage of leakage, the intensified gravitational effect led to a more pronounced
downward diffusion trend of the gas. When the gas diffusion reached a steady state, the jet direction was consistent with the buoyancy direction of
natural gas, creating a synergistic acceleration effect. This caused the volume fraction of natural gas on the ground to be significantly higher than that in
horizontal and downward leakage scenarios, verifying the dominant role of leakage direction in the diffusion range. To validate the effectiveness of the
decoupling method, comparative results showed that: the relative error of the maximum diameter of the gas cloud obtained from simulation and
decoupling was 13.54%, and the relative error of the height was 11.83%. Meanwhile, the relative error of the natural gas volume fraction at each
monitoring point ranged from 6.49% to 14.92%. All the above errors meet the error requirement of no more than 20.00% in the field of emergency
response, effectively verifying the accuracy of the decoupling method in 3D concentration field reconstruction. [Conclusion] The combination of the
real-scenario platform and the decoupling algorithm addresses the accuracy challenges in scenario construction and 3D concentration field reconstruction
for high-pressure and large-diameter pipeline leaks. It can provide key data support for planning the entry routes of emergency response equipment and
selecting excavation methods in leak emergency disposal. This significantly improves the reliability of leakage simulations and the scientificity of
emergency decision-making, and offers crucial technical support for the safe operation, risk prevention and control, as well as emergency disposal of
long-distance natural gas pipelines in China. (9 Figures, 3 Tables, 26 References)

Key words: long-distance natural gas pipeline, pipeline leakage, scenario construction, concentration field decoupling, real-scenario drill
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Fig. 3 Contour plots of volume fraction distribution of natural gas leaked from buried natural gas pipeline at different leakage time
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