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Abstract: [Objective] Long-distance pipelines are essential for large-scale CO, transportation within the Carbon Capture, Utilization, and
Storage (CCUS) system, where the reliability of sealing systems directly influences safety and efficiency. While research has advanced the
understanding of the damage mechanisms affecting rubber O-rings in high-pressure CO, environments, the coupling mechanism between gas
diffusion and rubber deformation during rapid decompression remains underexplored. [Methods] In response to this issue, a multi-physics
coupling model was developed, incorporating CO, dissolution and permeation, nonlinear rubber deformation, and material damage evolution.
This model is based on Fick’s law of diffusion, the Mooney-Rivlin hyperelastic constitutive model, and the maximum principal strain
damage criterion. Utilizing the finite element method, a parametric solution was obtained to systematically investigate the performance
response under rapid decompression of four typical sealing materials: Hydrogenated Nitrile Butadiene Rubber (HNBR), Nitrile Butadiene
Rubber (NBR), Ethylene Propylene Diene Monomer (EPDM), and Natural Rubber (NR). The study focuses on analyzing the effects of

factors such as the cavity size, compression ratio, pressure level, and decompression rate. [Results] The four materials’ resistance to damage
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during rapid decompression in order from high to low is HNBR, NR, NBR and EPDM. Under an external pressure of 4 MPa, HNBR
demonstrated the best resistance to rapid decompression, exhibiting a maximum logarithmic strain of only 0.17, while EPDM’s peak strain
reached 1.42, surpassing its elongation at break and resulting in rupture. The influence of compression ratio on the strain of HNBR differed
from that of other materials due to the unique pressure difference characteristics of the cavity during decompression and HNBR’s material
properties. In contrast, NBR, EPDM, and NR exhibited reduced strain during rapid decompression with a moderate increase in compression
ratio. Furthermore, an increase in cavity diameter, higher external pressure, and a faster decompression rate would result in increased strain
within the cavity of the O-ring. [Conclusion] The developed numerical model accurately predicts the damage behavior of O-rings during
rapid decompression in high-pressure CO, environments, providing reliable theoretical support for material selection, structural parameter

design, and the formulation of operational and maintenance strategies for pipeline sealing systems, thus facilitating the achievement of the

“dual carbon” strategic goals. (14 Figures, 2 Tables, 25 References)
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Fig. 1 Schematic diagram of the diffusion process of CO,
molecules in rubber O-rings
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Table 1 Key performance parameters of four rubber
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Fig. 3 Diagram of the O-ring assembly simulation mesh model
and boundary setting
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Table 2 Vertex displacement statistics of O-ring cross-section
with varying mesh counts
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from cited references
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