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Abstract: [Objective] Quantitative characterization of the extent of incipient damage in polyethylene plate/shell structures is crucial for
ensuring the safe operation and preventive maintenance of oil and gas facilities. However, traditional ultrasonic testing techniques are limited
by the accuracy of detectable defects due to the wavelength diffraction limit, rendering them insensitive to incipient performance degradation
and structural defects at the micro-nano scale. Additionally, the nonlinear guided wave evaluation method is sensitive to temperature
variations and structural stress in complex environments, leading to significant impacts on the reliability and accuracy of the results.
[Methods] By combining thermoacoustic elasticity theory with the hyperelastic constitutive equation, a dispersion analysis model for
plate/shell structures under temperature-stress coupling was established. This model quantifies the sensitivity of phase velocities in various
guided wave modes to changes in ambient temperature and structural stress, thereby providing guidance for optimizing guided wave
excitation modes in damage detection. Instead of traditional interdigital transducers, discrete piezoelectric units were utilized to propose a

piezoelectric array structure based on temporal-spatial tuning and a guided wave excitation mode control method. This led to the
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development of a theoretical analysis model to reveal the array’s excitation characteristics. Additionally, the influence of various excitation
parameters on the guided wave excitation sound field was verified through experiments. A nonlinear ultrasonic guided wave detection system
was also developed, incorporating phase reversal and low-pass filtering techniques to extract zero-frequency response characteristics in
damage signals. The introduction of nonlinear acoustic parameters facilitates the quantitative characterization of the extent of incipient
performance degradation in polyethylene samples. [Results] Modes S,, SH,, and A, in the medium and high-frequency range (> 20 kHz)
were identified as having weak sensitivity to changes in ambient temperature and structural stress. The independently developed 1-3 type
piezoelectric composite array transducer demonstrated its capability for excitation control in a single guided wave mode in polyethylene
plates, significantly reducing the difficulty of analyzing detection signals. The time-domain morphology of zero-frequency responses was
found to be similar to the pulse envelope of the excitation signals, while the frequency-domain amplitude was observed to accumulate
continuously during propagation. Additionally, the nonlinear acoustic parameters in polyethylene samples exhibited an upward trend with the
extension of aging time. [Conclusion] The zero-frequency response of nonlinear ultrasonic guided waves demonstrates high sensitivity in
detecting the microstructural evolution of materials. This approach enables a quantitative evaluation of incipient performance degradation in
polyethylene plate/shell structures, providing reliable data to support predictions regarding the remaining lifespan of oil and gas facilities.
(17 Figures, 35 References)
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Fig.1 Temperature-dependent variations in material
parameters of polyethylene samples
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Fig. 2 Dispersion analysis model of polyethylene plate/shell structure under temperature-stress coupling
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