
 

引文：施宁，孙祥龙，苗兴园，等. 基于弱磁检测的埋地管道点蚀缺陷反演方法[J]. 油气储运，2025，44（8）：890−898.
SHI Ning, SUN Xianglong, MIAO Xingyuan, et al. Research on the inversion method of pitting corrosion defects in buried pipelines based on
weak magnetic detection[J]. Oil & Gas Storage and Transportation, 2025, 44(8): 890−898.
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摘要： 【目的】埋地管道在石油、天然气等资源运输方面发挥着重要作用，但受周围土壤环境影响，埋地管道点蚀

缺陷时有发生，严重影响管道运行可靠性。弱磁检测技术作为一种新型的无损检测技术，具有操作简易、灵敏度

高、适应性好等优势，被广泛应用于埋地油气管道检测领域。弱磁检测的数据分散性与相关样本数据过少的问题

导致缺陷反演精度不足。在实际工程中，点蚀缺陷不易发现，检测难度较大，且现有研究鲜有涉及缺陷角度的预测。

【方法】将立方混沌映射与自适应惯性权重的鲸鱼优化算法（Chaotic Improved Whale Optimization Algorithm,
CIWOA）与向后传播 BP神经网络相结合，针对点蚀缺陷尺寸与角度提出基于弱磁检测的埋地管道点蚀缺陷反演

方法。首先，通过管道弱磁检测试验分析不同点蚀缺陷对弱磁信号特征的影响，选取反演参数并构建数据集，利

用 Smote算法进行数据增强；其次，采用核主成分分析（Kernel Principal Components Analysis, KPCA）进行数据降

维，确定点蚀缺陷尺寸及角度的主成分；最后，建立 CIWOA-BP模型预测埋地管道点蚀缺陷尺寸及角度，并与其

他模型预测结果进行对比。【结果】CIWOA-BP模型可以实现埋地管道点蚀缺陷尺寸及角度的准确预测，相比于

WOA-BP（Whale  Optimization  Algorithm-Back  Propagation）、BP、RF（Random  Forest）以及 SVM（Support  Vector
Machine）模型，CIWOA-BP模型的平均绝对百分比误差、均方误差、平均绝对误差值更小，绝对系数 R2

值更接近

于 1，表现出更高的预测精度。【结论】在此提出的基于弱磁检测的埋地管道点蚀缺陷反演方法可以实现点蚀缺陷

的准确反演，对于保障埋地管道安全运输具有良好的应用前景。但由于试验条件受限，该研究未能全面考虑弱磁

信号所有影响因素，后续需进一步改进。（图 6，表 4，参 32）
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Research on the inversion method of pitting corrosion defects in buried pipelines
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Abstract: [Objective]  Buried  pipelines  play  a  vital  role  in  the  transportation  of  resources  such  as  petroleum  and  natural  gas.  However,

pitting defects frequently occur in these pipelines exposed to surrounding soil environments, seriously compromising their reliability. As a

novel non-destructive testing technique, weak magnetic testing has been widely adopted in the detection of buried oil and gas pipelines due to

its advantages, including simplicity of operation, high sensitivity, and strong adaptability. Currently, the dispersion of weak magnetic testing

data and a lack of relevant sample data hinder the accuracy of defect inversion. Detecting pitting defects in engineering practices presents

significant  challenges.  Additionally,  previous  research  has  overlooked  the  prediction  of  defect  angles.  [Methods]  This  study  proposes  a

methodology  for  inverting  pitting  defects  in  buried  pipelines  based  on  weak  magnetic  testing,  utilizing  a  combination  of  the  Chaotic

Improved Whale Optimization Algorithm (CIWOA) and the BP neural network, with a focus on the size and angle of the defects. First, the

impact of various pitting defects on the characteristics of weak magnetic signals was analyzed through experimental weak magnetic testing

on  pipelines.  The  results  were  then  used  to  select  inversion  parameters  and  establish  data  sets,  which  were  enhanced  using  the  Synthetic
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Minority  Oversampling  Technique  (SMOTE)  algorithm.  Next,  Kernel  Principal  Component  Analysis  (KPCA)  was  applied  to  reduce  the

dimensionality of the data and identify the principal components contributing to the sizes and angles of pitting defects. Finally, a CIWOA-BP

model  was  developed  to  predict  the  size  and  angle  of  pitting  defects  in  buried  pipelines.  A comparison  of  the  prediction  results  from the

proposed model was conducted against those from other existing models. [Results] The results demonstrate the accuracy of the CIWOA-BP

model in predicting the size and angle of pitting defects in buried pipelines. With smaller values of mean absolute percentage error (MAPE),

mean squared error (MSE), and mean absolute error (MAE), along with the coefficient of determination R2 closer to 1 compared to WOA-BP

(Whale Optimization Algorithm-Back Propagation), BP, RF (Random Forest), and SVM (Support Vector Machine), the CIWOA-BP model

shows superior  prediction accuracy for  both the sizes and angles of  pitting defects. [Conclusion] Therefore,  the proposed method enables

accurate inversion of pitting defects in buried pipelines using weak magnetic testing, presenting promising application prospects for ensuring

the safe transportation of these pipelines. (6 Figures, 4 Tables, 32 References)

Key words: weak  magnetic  testing,  buried  pipeline,  inverting  pitting  defect,  defect  angle,  dimensionality  reduction  of  data,  Chaotic

Improved Whale Optimization Algorithm-Back Propagation (CIWOA-BP) model

管道运输是石油、天然气等资源运输的重要方式

之一，在油气体制深化改革与“双碳”战略目标下，油

气管道正朝着大型化、网络化、多元化的方向发展，而

大规模复杂管网的运行管理带来了新的机遇与挑战
[1]
。

为减少人为破坏、节省城市空间，野外长输管道与城

市内管道通常采用埋地敷设的方式，管道处于复杂且

难以预测的土壤环境中，土壤内部电阻率、pH值等因

素会对埋地管道造成腐蚀
[2−4]
，使得埋地管道点蚀现象

时有发生。点蚀缺陷不易察觉，发展速度快，容易造成

管壁穿孔与泄漏
[5]
，因此埋地管道点蚀缺陷的准确检

测与反演对于提升管道运行可靠性与安全性具有重要

意义
[6]
。

常规的管道无损检测技术包括超声检测、X射

线检测、涡流检测、漏磁检测及弱磁检测等。其中，

漏磁与弱磁检测技术均能有效识别管道内外壁腐蚀

缺陷，并实现输气管道的实时监测与故障诊断
[7−10]
。

漏磁检测技术可适应超高温环境，检测速度快，适用

于大面积扫描，但设备复杂，需强磁场源。弱磁检测

技术效率较低，需慢速精细操作，但灵敏度高、设备

简单、适用材料广泛。在埋地管道检测方面，漏磁检

测技术需要在挖开覆土层后或在小于 0.3 m的薄土

层进行应用，而弱磁检测技术可以在埋深小于 1.5 m

的情况下进行检测
[11−13]
，在某些特定检测环境下具有

一定优势。

在埋地管道腐蚀缺陷弱磁检测方面，Liu等 [13]

通过建立磁力学等效模型，分析了磁导率与应力之间

的关系，探讨了弱磁信号的传播特性，利用 Boltzmann

Lift-off修正因子描述弱磁信号随提离值的变化规律。

杨晓惠等
[14]
提出了一种基于扩展磁荷模型的埋地管道

弱磁检测方法，考虑了力磁耦合效应与位错钉扎效应，

分析了不同类型缺陷（体积型、面积型、焊缝型）对弱

磁信号的影响，发现梯度模量在缺陷处出现显著尖峰

畸变，且峰值随缺陷尺寸增大而提高。刘艳军等
[15]
通

过改进磁偶极子理论模型，建立了一种针对球形缺陷

的弱磁信号正演模型，该模型能够有效模拟焊缝气孔

缺陷处的磁感应强度分布特征，为缺陷定量反演研究

提供了理论依据。张华斌等
[16]
建立了含缺陷管道弱磁

信号正演模型，并研究了腐蚀缺陷磁感应强度波形特

征以及离地高度、磁化强度对磁感应强度的影响，其

中正演模型的误差率为 11.11％。上述研究进行了管

道缺陷弱磁检测的数学模型建立与试验分析，但鲜少

涉及点蚀缺陷尺寸及角度反演。同时，实际工程中弱

磁检测数据具有分散性且缺陷样本数据较少，导致缺

陷反演精度不足。

为解决上述问题，将立方混沌映射与自适应惯性

权重的鲸鱼优化算法（Chaotic  Improved Whale Opti-

mization Algorithm, CIWOA）与 BP神经网络相结合，

针对点蚀缺陷的尺寸与角度，提出了基于弱磁检测的

埋地管道点蚀缺陷反演方法。首先，通过管道弱磁检

测试验分析不同点蚀缺陷对弱磁信号特征的影响，进

行反演参数选取并构建数据集，利用 Smote算法进行

数据增强；其次，采用核主成分分析（Kernel Principal

Components Analysis, KPCA）进行数据降维，确定点蚀

缺陷尺寸与角度的主成分以及其对点蚀缺陷深度的累

计贡献率；最后，建立 CIWOA-BP模型预测埋地管道

点蚀缺陷尺寸及角度。 
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1    埋地管道点蚀缺陷弱磁检测试验

埋地管道弱磁检测是一种利用地磁场与应力对铁

磁性材料的影响来检测缺陷的技术。管道缺陷处的应

力较高，会导致磁畴发生变化，形成稳定磁化状态。这

种变化具有不可逆性，即使在去除外力后，缺陷处的

磁场仍然不同。因此通过检测管道周围的磁场差异，

可以确定缺陷的位置。 

1.1    试验设计

搭建由非铁磁性材料制成的试验平台，管材 X52

钢，管长 1 200 mm，外径 126 mm，壁厚 7 mm。在管道

表面加工不同尺寸及角度的点蚀缺陷。将弱磁检测

设备抬高 0.5 m，模拟覆土层下埋地管道状态。采用

直流电机控制检测设备的运动速度，使其沿管道轴向

匀速运动，实时采集弱磁信号并传输至上位机（图 1）。 

1.2    弱磁检测试验结果分析

ϕ

在 150 mm、350 mm、500 mm、700 mm、900 mm、

1 000 mm共 6个缺陷位置处（图 1），测量不同深度

与直径的点蚀缺陷弱磁信号（图 2），轴向磁感应强

度均出现峰值。当点蚀直径    均为 10 mm、点蚀深

度 H分别为 1 mm、3 mm、5 mm、7 mm时，轴向磁感

应强度峰值分别为 25 000 nT、30 000 nT、50 000 nT、

65 000 nT。这说明当点蚀缺陷直径相同时，随着点

蚀深度的增加，轴向磁感应强度峰值逐渐增大。当

点蚀深度均为 7 mm，点蚀直径分别为 6 mm、8 mm、

10 mm时，轴向磁感应强度峰值分别为 101 000 nT、

100 000 nT、65 000 nT。这说明当点蚀缺陷深度相同

时，随着点蚀缺陷直径的增大，轴向磁感应强度峰值

逐渐减小。
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图 2　不同缺陷深度与直径下不同管道位置处点蚀缺陷弱磁
信号图

Fig. 2　Weak magnetic signal of pitting defects at different
pipeline positions with varying defect depths and diameters

 

实际管道点蚀缺陷的位置可能出现在沿管道

周向不同角度，因此针对管道点蚀缺陷与弱磁检测设

备不同角度进行检测（图 3）。设置点蚀缺陷直径为

10 mm，缺陷深度分别为 1 mm、3 mm，分别位于沿

管道轴向 150 mm、350 mm处，缺陷角度分别为 0° 、
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图 1　人工加工管道缺陷、弱磁检测角度及弱磁检测试验装置
组成示意图

Fig. 1　Shematic diagram of the anual processing defects in
pipelines, the angles of weak magnetic testing and the

experimental weak magnetic testing setup
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45° 、90° 、135° 进行磁场强度检测。可以看出，当点

蚀缺陷与弱磁检测设备角度逐渐增大时，检测系统得

到的磁场数据整体呈下降趋势，但不同角度的缺陷处

磁信号均出现峰值，这说明点蚀缺陷与弱磁检测设备

角度不同会导致弱磁信号特征发生变化。 

2    埋地管道点蚀缺陷反演
 

2.1    反演参数选取

由于弱磁检测数据的复杂性，若将原始信号作为

数据则不能准确地预测缺陷尺寸，因此需要对数据进

行处理。通过分析弱磁信号，提取弱磁特征作为反演

参数
[17–18]
。 

2.2    数据预处理

Smote方法是一种应对数据集类别不均衡问题

的创新性过采样技术，其运用 K最近邻原理确定少

数类样本在特征空间中的若干最接近邻居。在这部

分样本与每一个最近邻样本间执行随机的线性内插

运算，从而产生位于这两点连线上的新增合成样本，

并最终将这些合成样本整合进原数据集中，以此达到

平衡各类别样本数量的目的
[19–20]
。管道缺陷尺寸预测

的准确度除了依赖于预测模型的选择外，还需大量数

据支撑。然而，缺陷数据的采集难度、复杂的管道状

况导致样本数量欠缺，也阻碍了各种方法在管道缺陷

尺寸预测方面的应用。运用 Smote方法对现有的少

量数据模拟分析后进行数据扩充，可为预测准确性提

供基础。

同时，由于造成管道缺陷因素众多且关系复杂，

若将全部因素作为模型输入，会导致信息冗余，增加

预测误差。因此，对众多因素进行合理分类、提取，利

用 KPCA[21–22]
降低数据维度，从而能够正确地表述缺

陷尺寸。 

2.3    反演模型建立 

2.3.1    立方混沌映射

鲸鱼优化算法（Whale  Optimization  Algorithm,

WOA）通常采用随机方法进行种群的初始化，因此该

算法缺乏种群多样性。然而，立方混沌映射能够产生

[0，1]的混沌序列，且序列具备随机性、周期性及遍历

性
[23–24]
，有利于保证种群的多样性，进而提高全局搜索

能力，计算公式为：

Cn+1 = βCn(1−C2
n) （1）

Cn Cn+1 β式中：  、  分别为第 n、第 n+1个混沌值；   为控

制参数，通常取值 2.595。 

2.3.2    自适应惯性权重

ω自适应惯性权重   可以有效地平衡全局搜索与

局部搜索
[25–26]
，防止算法陷入局部最优，从而提升算法

的寻优精度与计算效率，计算公式如下：

ω = ωmin+ (ωmax−ωmin)S e(−t/tmax) （2）

ωmin ωmax

tmax

式中：  、  分别为惯性权重的最小值、最大值；S

为调整系数；t、   分别为算法当前迭代次数、最大迭

代次数。 

2.3.3    CIWOA-BP模型

BP神经网络具有较强的非线性映射与泛化能力，

但也存在收敛慢、易陷入局部最优等问题
[27−31]
。WOA

算法模拟了座头鲸的捕食行为，包括对猎物的包围、

攻击与搜索 3种行为模式，具有控制参数少、优化能

力强等优点
[32]
。CIWOA-BP模型通过引入立方混沌映

射与自适应惯性权重改进 WOA算法，优化 BP神经

网络的权值与阈值，进而提升预测的准确性（图 4，其

中 P为选择概率，A为系数向量）。 

 

100 120 140 160 180 200
12 000

14 000

16 000

18 000

20 000

22 000

24 000

26 000
磁
场
强
度

/n
T

磁
场
强
度

/n
T

位移/mm

缺陷角度/（°）

位移/mm

0  45
 90  135

缺陷角度/（°）
0  45

 90  135

300 320 340 360 380 400
10 000
12 000
14 000
16 000
18 000
20 000
22 000
24 000
26 000
28 000
30 000

（a）150 mm 处缺陷 （b）350 mm 处缺陷
 

图 3　管道 150 mm、350 mm 附近与弱磁检测装置呈不同角度的点蚀缺陷弱磁信号图
Fig. 3　Weak magnetic signal diagram of pitting defects near 150 mm and 350 mm of the pipeline and at different angles with the

weak magnetic detection device
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3    预测结果
 

3.1    数据集构建

采用 Smote算法对原始数据（表 1）进行数据增强，

在数据不丢失信息的前提下尽可能扩大数据集。其中，

X0～X11 为 12个反演参数：X0 为切向峰峰值，X1 为法向

峰峰值，X2 为合成磁场峰峰值，X3 为切向变化率，X4 为

法向变化率，X5 为合成磁场强度变化率，X6 为切向磁场

梯度，X7 为法向磁场梯度，X8 为切向梯度极限系数，X9

为法向梯度极限系数，X10 为磁异常信号的占宽，X11 为磁

异常信号的面积。Y1～Y3 为输出量：Y1 为点蚀缺陷深度，

Y2 为点蚀缺陷直径，Y3 为点蚀缺陷与弱磁检测设备角度。
 
 

表 1　部分管道缺陷样本数据表
Table 1　Sample data of pipeline defects (partial)

X0/
nT

X1/
nT

X2/
nT

X3/
（nT·mm−1

）

X4/
（nT·mm−1

）

X5/
（nT·mm −1

）

X6/
（nT·mm −1

）

X7/
（nT·mm −1

）
X8 X9

X10/
mm

X11/
mm2

Y1/
mm

Y2/
mm

Y3/（°） 

13.25
35.30
28.12
47.33
51.74
58.46
  8.45
20.41
62.48
55.45

  8.83
30.06
15.09
  6.01
40.36
17.86
  5.68
  7.64
32.16
42.28

15.92
46.36
31.91
47.71
65.61
61.13
10.18
21.79
70.27
70.96

0.13
0.33
0.31
0.53
0.38
0.93
0.12
0.19
0.31
0.34

0.11
0.39
0.24
0.06
0.29
0.55
0.09
0.11
0.18
0.25

0.17
0.51
0.39
0.53
0.48
1.08
0.15
0.22
0.36
0.42

2.52
2.50
2.13
2.44
2.37
2.23
2.14
1.98
1.67
1.91

0.06
0.08
0.09
1.12
1.00 
1.18
2.33
2.89
4.34
2.21

1.01
1.03
1.03
1.02
1.03
1.03
2.58
1.60
3.41
2.68

1.14
1.33
1.37
1.18
1.20
1.37
2.03
1.11
3.02
2.06

  98.47
107.17
  89.35
  89.46
136.53
  63.07
  69.22
106.55
204.09
165.14

  503.50
1 374.98
1 584.58
2 093.60
2 831.58
1 814.35
  282.29
1 163.59
5 788.77
5 000.44

1
3
5
7
7
7
1
3
5
7

10
10
10
10
  8
  6
10
10
10
  8

  0
  0
  0
45
45
45
90
90
135  
135  

 
 

3.2    反演参数降维结果

在数据集中，反演参数对每个输出量的影响程度

不同，因此采用 KPCA确定每个输出量的主控影响因

素。通过计算特征值与相应的特征向量，将原始高维

数据转换到新的特征空间，并借助核函数映射实现非

线性变换。然后，依据样本数据在新的特征空间上的

投影，生成能够清晰区分并反映潜在结构关系的低维

数据表达。最后，利用高斯核函数求得反演参数对点

蚀缺陷深度的累计贡献率（图 5）。

可见，前 4项反演参数对点蚀缺陷深度的累计贡

献率超过 90％，覆盖了原始样本数据 90.75％的信息，

因此选取贡献率前 4的主成分作为后续预测点蚀缺陷

深度的输入量，有效去除了数据间的冗余信息。通过

KPCA计算 4个主成分所对应的特征向量值（表 2）。

 

BP 神经网络初始化鲸鱼种群 确定 BP 网络结构

初始 BP 网络权值阈值

获得最优权值与阈值

计算误差

更新权值与阈值

是

是

是 否

否

否
是否达到最大迭代层数

300包围猎物捕获猎物搜索猎物

预测结果

P 是否小于 0.5

|A| 是否大于 1

计算每个鲸鱼的适应度

更新鲸鱼位置

计算适应度值

记录最优目标值
 

图 4　CIWOA-BP 模型计算流程图
Fig. 4　Flow chart of calculations based on CIWOA-BP model

检测与完整性 ||  Inspection & Integrity 2025 年 8 月　第 44 卷 第 8 期  

894 yqcy.pipechina.com.cn



根据特征向量可以得出主成分与反演参数之间的

关系（以 F1 为例）：

F1 = −0.24 X0−0.22 X1−0.22 X2−0.24 X3−
0.22 X4−0.22 X5+0.24 X6+0.14 X7+

0.50 X8+0.22 X9−0.08 X10+0.53 X11 （3）

同理，利用 KPCA分别进行数据降维，得到点蚀

缺陷直径、角度的累积贡献率与特征值数量的关系

（图 6）。可见，点蚀缺陷直径、角度前 4项累计贡献率

超过 90％，选取贡献率前 4的主成分作为预测点蚀缺

陷直径、角度的输入量。
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图 6　反演参数对点蚀缺陷直径、角度的累计贡献率图
Fig. 6　Cumulative contribution rates of inversion parameters

to pitting defect diameter and angle
  

3.3    降维前后结果对比

根据数据降维结果，利用 CIWOA-BP模型分别

对点蚀缺陷深度、直径、角度进行预测。利用测试集验

证模型精度，并与无数据降维的情况进行对比（表 3）。

相比于降维前，通过 KPCA降维后的 CIWOA-BP模型

预测值明显与真实值更加接近，尤其对于点蚀缺陷角

度，降维后的预测效果远远优于降维前。同时，降维后

CIWOA-BP模型平均绝对百分比误差（Mean Absolute

Percencage  Error,  MAPE）、均方误差 （Mean  Square

Error,  MSE）、平均绝对误差 （Mean  Absolute  Error,

MAE）的值相比降维前更小，降维后 CIWOA-BP模型

的绝对系数 R2
相比降维前更接近于 1。因此，降维后

CIWOA-BP模型预测效果更好。
 
 

表 3　CIWOA-BP 模型降维前后点蚀缺陷深度、直径、角度预测效果误差对比表
Table 3　Comparison of prediction errors for pitting defect depth, diameter and angle before and after dimensionality reduction of

CIWOA-BP model

CIWOA-BP模型
点蚀缺陷深度预测结果 点蚀缺陷直径预测结果 点蚀缺陷角度预测结果

MAPE MSE MAE R2 MAPE MSE MAE R2 MAPE MSE MAE R2

降维前 18% 0.63 0.59 0.89 2.0% 0.09 0.19 0.93 35% 876.50 24.03 0.47

降维后 12% 0.29 0.42 0.92 1.9% 0.05 0.15 0.97 11% 57.23 6.80 0.98
  

3.4    模型性能对比

为了进一步验证 CIWOA-BP模型的优越性

（表 4），选择其他 4种模型进行对比。分析可知，

CIWOA-BP模型的预测性能要优于其他模型。对于

点蚀缺陷深度与角度，CIWOA-BP模型与 WOA-BP

模型差距较小，但对于点蚀缺陷直径，CIWOA-BP模

型的精度要远高于 WOA-BP模型，该模型的 MAPE、

MSE、MAE值分别降低了 60.00％、81.48％及 63.41％。

传统 BP模型预测精度要明显低于 CIWOA-BP模型

与WOA-BP模型，其中 RF（Random  Forest）模型与

SVM（Support Vector Machine）模型表现更差，无法准

确预测点蚀缺陷尺寸及角度。 
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图 5　反演参数对点蚀缺陷深度的累计贡献率图
Fig. 5　Cumulative contribution rate of inversion parameters

to pitting defect depth
 

表 2　反演参数主成分所对应特征向量值表
Table 2　Eigenvector values for the principal components of

inversion parameters

反演参数
特征向量

F1 F2 F3 F4

X0 −0.24 0.01 −0.37 −0.03
X1 −0.22 −0.27 0.15 −0.14
X2 −0.22 0.05 −0.39 −0.06
X3 −0.24 −0.02 −0.17 0.19
X4 −0.22 −0.19 0.14 −0.33
X5 −0.22 0.04 −0.39 −0.04
X6 0.24 0.41 0.04 −0.09
X7 0.14 0.37 0.13 0.08
X8 0.50 −0.45 −0.19 0.02
X9 0.22 0.40 0.07 −0.10
X10 −0.08 −0.11 0.44 −0.21
X11 0.53 −0.30 −0.14 −0.04
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4    结论

提出一种基于弱磁检测的埋地管道点蚀缺陷反演

方法，通过弱磁检测试验分析了不同点蚀缺陷对弱磁

信号特征的影响，选取了 12个弱磁信号特征参数作为

点蚀缺陷反演参数，采用 KPCA进行数据降维，建立

了 CIWOA-BP模型预测埋地管道点蚀缺陷尺寸及角

度，得出以下结论：

1）弱磁检测试验结果表明，当点蚀缺陷直径相同

时，随着点蚀深度的增加，轴向磁感应强度峰值逐渐

增大。当点蚀缺陷深度相同时，随着点蚀缺陷直径的

增加，轴向磁感应强度峰值逐渐减小。同时，点蚀缺陷

角度不同也会导致弱磁信号特征发生变化。

2）采用立方混沌映射与自适应惯性权重对 WOA

算法进行改进，相比于 WOA-BP、BP、RF以及 SVM

模型，CIWOA-BP模型在点蚀缺陷尺寸和角度都表现

出更高的预测精度。

3）新建模型为埋地管道点蚀缺陷反演提供了理论

依据，但由于试验条件的限制，未考虑埋地管道外部

载荷、介质内压等因素对弱磁信号的影响，将在下一

步研究工作中改进。
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