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s

Abstract: [Objective] Given the crucial role of efficient small-scale storage and transportation of natural gas in achieving the “dual carbon’
goals, the utilization of adsorption-hydration synergy for storage and transportation offers several advantages, including mild storage
conditions, high safety, and strong reliability, indicating significant potential for broad applications. [Methods] This paper focuses on the
adsorption-hydration approach, which harnesses the advantages of both adsorption and hydration methods for methane storage and
transportation in nanoporous media. By examining a substantial body of relevant literature, the paper provides a systematic review of
research progress across multiple aspects, including the formation mechanisms of methane hydrates in nanopores, the dynamic models of
hydrate formation, and the control mechanisms of adsorption-hydration coupling in nanoporous media. [Results] Regarding the formation
mechanism of methane hydrates in nanopores, significant impacts arise from the characteristics of porous media, including pore sizes,
surface groups, and their hydrophilic and hydrophobic properties. The adsorption-hydration coupling under the nano-confinement effect
plays a crucial role in this process. However, the influence pattern of forces exerted by the pore walls on the adsorption and diffusion of
methane molecules remains unclear. Although numerous studies have established dynamic models to represent hydrate formation, these

models do not adequately account for the nano-confinement effect. It is recommended to develop a universal prediction model that simulates
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hydrate formation rates under various conditions by coupling multiple models that address microcosmic effects, such as fluid heat and mass
transfer, as well as gas adsorption. Research on the control mechanisms of adsorption-hydration coupling indicates that factors such as water
content, surface properties of adsorbent materials, temperature, pressure, pore size, and particle size are closely linked to methane storage
density and hydrate growth rates. Notably, water content and the surface properties of adsorbent materials jointly determine the distribution
pattern of pre-adsorbed water, which subsequently influences the adsorption-hydration process. Currently, however, there is a lack of
technical means to comprehensively analyze and optimize the coupling among these key factors. [Conclusion] Although storage and
transportation technology via adsorption-hydration synergy demonstrates significant application potential, several challenges continue to
impede its research and development. Future research should focus on overcoming the bottlenecks encountered in elucidating the nano-
confinement effect mechanism to enhance dynamic models and develop comprehensive optimization technologies. This approach will

facilitate industrial applications, providing robust technical support for achieving the “carbon peaking and carbon neutrality” goals while

advancing sustainable development in the energy sector. (6 Figures, 1 Table, 82 References)

Key words: storage and transportation technology via adsorption-hydration synergy, methane hydrate, dynamic model, nanopore
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275 K with a water content of 4.1
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Fig. 6 Schematic diagram of methane hydrate formation
within confined spaces of carbon nanoporous media
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Table 1 Effect of particle size on methane hydrate formation
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7.0 275 500~1 500 1.61+0.63
A/NF2 000 3.58+1.80
0.375 154.00+£88.04
1.450 66.20+31.72
63 256 4.030 59.50+£50.92
6.720 21.30+22.87
7.640 29.60+9.93
8.680 17.00+5.62
250~420 0.17 87.27%+4.24%
8.0 277 420~841 1.50+0.95 93.50%+2.17%
841~1 680 1.89+1.23 96.50%+2.30%
250~420 836.67+556.28  75.50%+4.48%
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