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基于 HMOGWO-RF 的埋地管道点蚀深度机理-学习预测模型

宋福霖　赵弘　苗兴园

中国石油大学（北京）机械与储运工程学院

摘要：【目的】截至 2025 年，中国油气管网规模将达到 24×104 km，管道输送已然成为中国油气运输的重要方式之

一。受管道周围土壤环境等因素影响，管道腐蚀现象时有发生，降低了管道的使用年限。为保障埋地管道的安全

运行，需有效预测其所受腐蚀程度。【方法】将随机森林（Random Forest, RF）算法与多目标优化方法相结合，提

出腐蚀机理引导下的埋地管道点蚀深度预测模型，将管道腐蚀的腐蚀机理知识引入机器学习模型中，提高模型的

可解释性。根据特征变量之间的交互作用机制，构建新的特征变量，以更好地反映管道周围土壤环境的影响因素。

通过随机森林算法中的基尼系数计算新特征空间中所有特征的重要性，利用混合多目标灰狼优化（Hybrid Multi-
Objective Grey Wolf Optimization, HMOGWO）算法求解随机森林算法的最优超参数，并将特征选择融入多目标

优化中。在多目标优化的过程中，综合考虑特征数量、预测准确率、模型稳定性 3 个优化目标，并设计综合评价指

标，对比分析 Pareto 解集，以获取特征子集与最优超参数组合，得到最具代表性、优化性能最佳的特征子集，提高

模型稳定性与预测准确性。【结果】模型设计完成后，采用实际埋地管道的点蚀数据集对模型进行验证，将三目标

HMOGWO 算法与 RF 模型相结合，模型的预测性能及稳定性远超三目标灰狼优化算法、双目标 HMOGWO 算

法、双目标灰狼优化算法、单目标灰狼优化算法及单目标粒子群优化算法。【结论】该模型可以实现埋地管道最大

点蚀深度的准确预测，所提出的腐蚀机理引导下的埋地管道点蚀深度预测模型可以提高管道腐蚀预测的可解释

性与准确性，有助于延长管道的使用寿命，对于石油和天然气运输行业具有重要的实际应用意义。（图 12，表 2，
参 22）
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Mechanism-learning prediction model for pitting depth of buried pipeline based 
on HMOGWO-RF
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College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing)

Abstract: [Objective] China’s oil and gas pipeline networks are expected to reach 24×104 km by 2025. Pipeline transportation has become 

one of the key means of transportation in the country. However, these pipelines are vulnerable to corrosion caused by the surrounding soil 

environment and other factors, which shortens their life in service. To ensure the safe operation of buried pipelines, accurately predicting 

the degree of corrosion is crucial. [Methods] This paper presents a prediction model for the pitting depth of buried pipelines, guided by 

the corrosion mechanism and combining a Random Forest (RF) algorithm with a Multi-Objective Optimization process. The incorporation 

of knowledge about the pipeline corrosion mechanism enhances the interpretability of the machine-learning (ML) model. By building 

on the interaction mechanisms among characteristic variables, new variables were created to better reflect the influencing factors of the 

surrounding soil environment. The Gini coefficients in the Random Forest algorithm were used to evaluate the importance of all features in 

the new characteristic space through calculations. Additionally, a Hybrid Multi-Objective Grey Wolf Optimization (HMOGWO) algorithm 

was adopted to determine the optimal hyperparameters of the RF algorithm. This feature selection approach was integrated with the multi-

objective optimization process, considering three comprehensive optimization objectives: the number of features, prediction accuracy, and 

引文：宋福霖，赵弘，苗兴园. 基于 HMOGWO-RF 的埋地管道点蚀深度机理-学习预测模型[J]. 油气储运，2024，43（11）：1249-1259.
SONG Fulin, ZHAO Hong, MIAO Xingyuan. Mechanism-learning prediction model for pitting depth of buried pipeline based on 
HMOGWO-RF[J]. Oil & Gas Storage and Transportation, 2024, 43(11): 1249-1259.
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根据《中长期油气管网规划》，截至 2025 年，中国

油气管网规模将达到 24×104 km，将构建布局合理、覆

盖广泛、外通内畅、安全高效的现代油气管网[1]。然而，

随着服役时间的增长，油气管道不可避免面临腐蚀风

险，腐蚀导致的管道事故时有发生，造成了重大的经济

损失及环境污染。据统计，当前 20％~30％的管道使

用年限已超过 20 年，在周围土壤环境的作用下，点蚀

现象时有发生，可导致管道泄漏失效。因此，准确预测

埋地管道的点蚀对于保证管道可靠性及安全性具有重

要意义[2]。

近年来，国内外对于管道点蚀预测建立了多种模

型，建立时大多进行室内试验或以某种恒定不变的腐

蚀速率及环境条件进行模拟，但未考虑埋地管道土壤

特性与腐蚀速率在实际工况中存在随机变化的情况。

骆正山等[3]提出粗糙集（Rough Set, RS）结合多策略改

进的麻雀搜索算法（Multi-strategy Improved Sparrow 

Search Algorithm, MISSA）与最小二乘支持向量机

（Least Squares Support Vector Machine, LSSVM）建立

预测模型，利用 MSSA 求解出 LSSVM 中核函数参数

及惩罚因子的最优解，同时选取径向基核函数，使其预

测性能达到最优。Sim 等[4]提出一种通过幂律函数计

算点蚀深度的方法，将点蚀看作一个与暴露时间相关

的过程。Caleyo 等[5]提出了一种点蚀预测模型，该模

型考虑了土壤、管道的化学及物理特性。上述模型、实

验研究以及仿真模拟均需在某一限定条件下方可得到

相应结论，受腐蚀过程中各种条件的限制以及模型中

各参数简单的线性关系影响，无法精确预测真实工况

下埋地管道的点蚀过程。

随着科技迅猛发展，机器学习（Machine Learning, 

ML）方法受到深入关注。史航[6]提出了管道随机点

蚀模型的构建方法，对不同点蚀参数和管道因素下的

管道悬空沉降进行了模拟，得到点蚀深度、数量、半

径、管道内压、点蚀区长度等参数对埋地悬空管道力

学性能的影响规律。Li 等[7]提出了一种基于集成的

麻雀搜索算法（Sparrow Search Algorithm, SSA）与

长-短期记忆（Long Short-Term Memory, LSTM）的最

大点蚀深度预测数据驱动模型，测试集的均方根误差

（RMSE）为 0.060 7。吕林林等[8]采用核主成分分析

法（Kernel Principal Component Analysis, KPCA）进行

降维操作，随后利用改进的蝗虫优化算法（Improved 

Grasshopper Optimization Algorithm, IGOA）对极限

学习机（Extreme Learning Machine, ELM）进行优化，

确定最优网络结构和激励函数，提出了 KPCA-IGOA-

ELM 组合预测模型。Peng 等[9]提出了一种多相管道

内腐蚀速率预测的混合模型，该模型结合了主成分分

析（Principal Component Analysis, PCA）、混沌粒子群

优化（Chaos Particle Swarm Optimization, CPSO）与支

持向量回归（Support Vector Regression, SVR），其平均

绝对误差（MAE）仅为 0.083。

已有的研究在利用 ML 方法进行腐蚀预测方面已

取得很大进展，但在 ML 模型中集成的腐蚀机理较少，

导致模型的可解释性较差。ML 模型的超参数对预测

性能具有显著影响，上述研究建立了具有智能优化算

法的混合模型，但仅考虑了预测精度，未考虑模型的稳

定性。同时，上述模型大多通过原始数据集或数据降

维进行训练，特征选择未参与到优化过程中。为解决

model stability. Using a defined comprehensive evaluation index, a comparative analysis of the Pareto solution set was conducted to obtain 

the optimal combination of feature subsets and hyperparameters. The resulting feature subsets, which are both representative and optimized 

for performance, contribute to improvements in model stability and prediction accuracy. [Results] The designed model was validated using a 

pitting dataset of real-world buried pipelines. By leveraging the combination of the three-objective HMOGWO algorithm and the RF model, 

it significantly outperformed the three-objective MOGWO algorithm, the two-objective HMOGWO algorithm, the two-objective MOGWO 

algorithm, as well as both the single-objective GWO algorithm and the single-objective PSO algorithm in terms of prediction performance 

and stability. [Conclusion] The proposed model has proven effective in accurately predicting the maximum pitting depth of buried 

pipelines. It is more interpretable and accurate in pipeline corrosion prediction, guided by the corrosion mechanism. This model is shown to 

be valuable in prolonging the service life of pipelines, highlighting its significance for practical applications in the oil and gas transportation 

sector. (12 Figures, 2 Tables, 22 References)

Key words: buried pipeline, pitting depth, guided by corrosion mechanism, Random Forest (RF) algorithm, Hybrid Multi-Objective Grey 

Wolf Optimization (HMOGWO) algorithm, feature importance
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上述问题，将腐蚀机理与领域知识融入 ML 模型中，

考虑土壤特性、管道特性、时间变化进行最大点蚀深度

预测。通过原始特征与自变量之间的相互作用构建新

的特征空间。由于各输入变量对最大点蚀深度的影响

程度不同，需要进行特征选择并确定特征子集。使用

随机森林（Random Forest, RF）的基尼系数对所有变

量的特征重要性进行排序，提出了一种基于非线性收

敛因子与天牛须搜索（Beetle Antennae Search, BAS）

算法的混合多目标灰狼优化（Hybrid Multi-Objective 

Grey Wolf Optimization, HMOGWO）算法，用于优化

RF 模型的超参数。此外，通过最小化预测误差与输

入变量的数量，综合考虑特征数、预测精度及模型稳定

性，设计综合评价指标，用于确定最优的超参数及最合

适的特征子集。

 
1　理论基础 

1.1　腐蚀机理

管道腐蚀可分为全面腐蚀与局部腐蚀。全面腐

蚀指管道管壁整体以一种缓慢、均匀的速度发生腐蚀

减薄；局部腐蚀则是管道表面某个或某些局部位置发

生腐蚀的现象[10]。由于埋地管道沿线各处所处的环

境存在差异，其腐蚀速率与腐蚀程度相应存在明显差

异，发生局部腐蚀的可能性远大于全面腐蚀，且局部

腐蚀向纵深发展速度快、检测难度大，更易对管道造

成重大危害。局部腐蚀包含点蚀、缝隙腐蚀、电偶腐

蚀、应力腐蚀等，其中点蚀是管道最常见的腐蚀形式，

其蚀坑直径较小、深度较深，具有很强的隐蔽性。同

时，由于土壤微生物作用、腐蚀物质、湿度与温度变

化、电化学作用均对点蚀具有影响[11]，其机制相对复

杂，难以有效防控。

1.2　随机森林理论

集成学习是通过对多个弱学习器进行结合获得

一个强学习器来提高预测结果的一种方法。RF 算

法是一种常用的集成学习方法，其引入了 Bagging 框

架与随机属性选择，计算方便、准确率高。首先，采用

Bootstrap 采样从训练数据集中提取 n 个样本，建立

n 个决策树。在这些决策树的每个分支上，节点上的

均方误差（MSE）不断更新，直到得出最优结果为止

（图 1），将所有决策树的平均预测值作为 RF 算法的

最终结果[12]：

fRF（x）＝n
1

i＝1

n
Mi（x）                     （1）

式中：fRF（x）为 RF 模型的最终结果；Mi（x）为第 i 个
决策树模型的结果。

1.3　多目标灰狼优化算法

多目标灰狼优化（Mult i -Objec t  Grey  Wol f 

Optimization, MOGWO）算法为一种基于多目标优化

的群体智能算法，是灰狼优化算法的改进与扩展[13]。

该算法通过灰狼个体之间的协作与竞争，不断搜索、优

化多个目标函数的解向量，从而达到多目标优化的目

的。相比于传统的单目标优化算法，MOGWO 算法能

够在有限的搜索空间中找到多个最优解，提供更多选

择及更好的决策支持[14]。

 
2　机理引导下的点蚀深度预测模型 

当前，国内外的最大点蚀深度预测经验模型缺乏

对管道周围环境土壤特性以及管道各方面性能因素

的考虑，无法准确描述点蚀过程。此外，传统的 ML

模型缺乏腐蚀机理引导，使得其在预测性上也有所欠

缺。为解决上述问题，首先基于腐蚀机理不同变量之

间的相互作用，在腐蚀数据集原始特征基础上构建新

的特征参数，然后通过 RF 模型的基尼系数计算出特

征参数的重要性，最后利用 HMOGWO 算法对 RF 模

型超参数进行优化，综合考虑特征数量、预测精度、

模型稳定性等多个目标，实现多因素下的埋地管道

最大点蚀深度预测（图 2）。HMOGWO 算法集成了

图 1　RF 算法流程图
Fig. 1　Architecture of RF algorithm

宋福霖，等：基于 HMOGWO-RF 的埋地管道点蚀深度机理-学习预测模型
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MOGWO 算法、BAS 算法及非线性收敛因子，使得优

化解不仅由灰狼指导，也由天牛须进行指导，收敛性

能较佳。

2.1　腐蚀机理引导的特征空间

2.1.1　特征构建

埋地管道的最大点蚀深度与环境因素有关，如 pH

值（pH）、暴露时间（t）、氧化还原电位（ERP）、涂层类型

（KC）、管地电位（EPP）、电阻率（ω）、含水量（CW）、土壤

容积密度（ρ s）、氯离子浓度（CC）、碳酸氢盐浓度（CB）

及硫酸盐离子浓度（CS），各参数设置为预测模型的独

立输入变量，各变量之间存在相互作用关系，其中，ω

与ρ s 之间的相互作用关系为[15]：

log ω＝a＋βDC
DC＋βDS

DS                   （2）

DC＝ρ s，r

ρ s ×100                          （3）

式中：a、βDC
、βDS

为常数系数；DC 为压实度；DS 为饱

和度；ρ s，r 为同种土壤的参考容积密度，kg/m3。

CW 与ω 之间的相互作用关系为[16]：

CW＝aωb                            （4）

式中：a、b 为常数系数。

ERP 与 pH 值之间的相互作用关系为[17]：

ERP＝ 2 e
kB T ln 10

［r（H2）－2 pH］            （5）

式中：kB 为玻尔兹曼常数；e 为基本电荷，C；T 为热力

学温度，K；r（H2）为氢分子热力学活度的倒数。

考虑输入变量之间的相互作用，设计腐蚀机理引

导的特征空间。为了更好地预测埋地管道最大点蚀

深度，基于各输入变量之间的相互作用关系构建新的

特征参数，ERP/pH、CW/ω、CW/10ρs、ω /10ρs。最后，构造

HMOGWO-RF 模型预测最大点蚀深度（图 3）。

图 2　腐蚀机理引导的 ML 模型整体框架示意图
Fig. 2　Overall framework of ML model guided by corrosion mechanism

图 3　最大点蚀深度预测流程图
Fig. 3　Flow chart for prediction process of maximum pitting depth
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2.1.2　特征重要性

在构造新特征之后，输入变量中包含很多重要性

未知的特征，因此采用 RF 算法的基尼系数GF 选择具

有代表性的特征：

GF＝1－
v＝1

m

λsv
2                          （6）

式中：m 为训练集中的特征数；λsv 为第 v 个特征在节

点 s 中的比例。

节点 s 的特征Fi 的重要性为 IFis
：

IFis
＝GF－G 1－G 2                       （7）

式中：G 1、G 2 分别为分枝后两个新节点的基尼指数。

特征Fi 在第 k 棵树中的重要性为 IFi，k
：

IFi，k
＝

s∈M
IFis

                          （8）

式中：M 为特征Fi 在第 k 棵树中出现的次数。

第 i 个特征的归一化权重为 IFi
为：

IFi
＝

i＝1

h

IFi

IFi                              （9）

式中：h 为特征的数量。

2.2　腐蚀机理引导的 HOMOGWO-RF 模型

2.2.1　混合多目标灰狼优化算法

在 HOMOGWO 算法中，灰狼可以分为 4 个层次，

定义最优解决方案为α，第二优、第三优的解决方案

分别为β、δ，其余的解为ω。灰狼的捕猎（优化）过程

由方案α、β、δ 进行指导判别。灰狼的位置代表一个

可能的解决方案，灰狼ω（候选解）将跟随灰狼α、β、δ

（最优解）去寻找最优解决方案[18-19]。HOMOGWO 算

法在灰狼捕猎过程中关注的是整个种群，忽略了个体

判断，使其容易陷入局部最优。为解决此问题，引入

BAS 算法对其进行优化[20-21]。天牛左、右两侧触角的

位置XR、XL 定义为：

XR＝X＋l d
XL＝X－l d

                         （10）

式中：l 为左、右触角之间的距离；d 为随机单位向量。

根据左、右触角所感知气味浓度的差异，在第 j 次

迭代天牛位置Xj 的基础上，计算出第 j+1 次迭代天

牛位置Xj+1：

Xj+1＝Xj＋δjdsign［f（XR）－f（XL）］        （11）

式中：δj 为第 j 次迭代的搜索步长；sign（ ·）为符号函

数；f（ ·）为适应度函数。

基于 BAS 算法，在每次迭代中都考虑了个体对环

境的判断。α、β、δ 灰狼为搜索过程中的天牛，灰狼的

位置更新不仅由α、β、δ 灰狼指导，也由天牛须指导，

精英个体在每次迭代中对比其左右两侧的适应度函数

值，并以此更新狼的位置。

2.2.2　混合多目标灰狼优化算法-随机森林模型

采用 HMOGWO 与 RF 的混合模型预测埋地管

道最大点蚀深度（图 4）。由于决策树的超参数会影响

预测精度，在此提出通过 HMOGWO 优化射频模型的

超参数。同时，为使预测误差和计算成本最小化构建

三目标优化模型，使用输入特征数量、测试集的平均

绝对百分比误差（MAPE）与标准差（STD）作为适应

度函数，并采用 HMOGWO 算法对其进行最小化。特

征数越小，计算效率越高；MAPE 越小，预测误差越小；

STD 越小，模型稳定性越好。

 
3　结果与讨论 

3.1　数据采集

采用 Velázquez 等[22]收集的油气管道最大点蚀

深度数据集评估所提出模型的预测精度，将影响因

图 4　HMOGWO-RF 模型流程图
Fig. 4　Schematic diagram of HMOGWO-RF model
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3.2　特征选择与性能对比

利用 RF 的基尼系数评估新特征空间中所有输

入变量的特征重要性（图 5），可见对于管道点蚀，

E RP/pH 是最关键的影响因素，而KC 的影响程度最低。

采用 MAE、MAPE、MSE、RMSE、STD 等统计

指标及相关系数R 2 评价模型预测性能。将包含所有

输入变量的数据集根据重要性划为 D1~D15 共 15 个

特征子集（pH、t、ERP、TC、EPP、ω、CW、ρ s、CC、CB、CS、

ERP/pH、C W/ω、C W/10ρ s、ω /10ρ s），通过 HMOGWO-RF

模型选择最合适的特征子集，在多目标优化过程中

评估每个特征子集的性能。HMOGWO-RF 模型的

多目标由特征数数量、MAPE、STD 组成。优化结

果包含 20 个 Pareto 最优解（图 6），特征数在 1~9

之间，MAPE 为 0.004~0.588，STD 为 0.032~2.194，

超参数与特征子集的不同组合对整体预测性能有较

大影响。

在得到 Pareto 最优解后，设计综合评价指标K 用

于选择最优解，确定最优超参数和特征子集，使得预测

误差和特征数最小：

K＝0.2 μ＋0.4 EMAP＋0.4 DST           （12）

μ＝h
q

                                 （13）

素作为输入变量（表 1）。将构造的新变量 E RP/pH、

C W/ρ、C W/10ρ s、ρ /10ρ s，并对数据进行归一化处理，将

数据集中的 80％作为训练集，数据集中的 20％作为

测试集。

表 1　预测性能评价统计度量表
Table 1　Statistics for evaluation of prediction performance

参数 t /a pH EPP/V ω /(W·m) CW ρ s/(g ·mL-1) CC CB CS ERP/mV KC

最小值 5.00 4.140 -1.97 1.90 8.80％ 1.10 0.99×10-6 0.99×10-6 0.99×10-6 2.10 0.30

最大值 50.00 9.880 -0.42 399.50 66.00％ 1.56 672.70×10-6 195.20×10-6 1 370.20×10-6 348.00 1.00

平均值 22.99 6.139 -0.88 50.15 23.90％ 1.30 47.73×10-6 19.67×10-6 152.97×10-6 167.04 0.77

标准差 9.12 0.930 0.24 55.92 6.66％ 0.09 75.16×10-6 25.33×10-6 168.18×10-6 85.48 0.13

图 5　各输入变量特征重要性统计图
Fig. 5　Statistics of feature importance for input variables

图 6　HMOGWO-RF 模型优化结果图
Fig. 6　Optimization results of HMOGWO-RF model

（a）特征数数量

（b）MAPE 

（c）STD

式中：q 为特征子集的特征数；EMAP、DST 分别为归一

化后平均绝对百分比误差、标准差；μ 为归一化的μ。

K 值越小，整体模型预测性能越好。将数据代入



1255

Inspection & Integrity | 检测与完整性

yqcy.paperonce.org

式（12），可知最优特征数为 5，决策树数为 28，最小样

本叶为 1（图 7）。对于所选的特征子集与 HMOGWO-

RF 模型，MAPE、STD 分别为 0.006、0.055。

根据 Pareto 最优解结果，选择 S1~S8 共 8 个特

征子集进行对比（表 2），并统计不同特征子集的预测

性能（图 8）。可见，S8 子集缺乏腐蚀机理，导致其具

有较高的预测误差；S3、S4、S5 子集引入了腐蚀机理，

预测结果更加准确；S1、S7 子集由于信息的缺乏或冗

余导致其预测性能较差。这表明特征选择结合多目

标优化和自变量之间的交互作用对模型的改进具有

重要意义。同时，考虑预测性能和特征数，通过所提

出的 HMOGWO-RF 模型，选择 S3 子集作为最适特

征子集。

3.3　模型验证

为验证所提出模型的优越性，与采用集成学习模型

的单随机森林回归（Random Forest Regressor, RFR）模

型、梯度提升回归树（Gradient Boosting Regression Tree, 

GBRT）模型、极端梯度提升（eXtreme Gradient Boosting, 

XGB）模型、反向传播神经网络（Back Propagation Neural 

Network, BPNN）、极限学习机（Extreme Learning 

Machines, ELM）进行对比（图 9、图 10）。可见，所提出

HMOGWO-RF 模型对埋地管道最大点蚀深度的预测

值与实际值最接近，引入腐蚀机理以及采用混合模型具

有显著优势，在 S3 子集上，其误差最低，R2 为 0.999。

选取若干以 RF 模型为基础的混合模型与所提出

模型进行对比，并采用传统三目标 MOGWO 算法验

证 HMOGWO 算法的改进效果（图 11）。同时，为进一

步验证所提出模型的优越性，采用双目标 HMOGWO

算法、双目标 MOGWO 算法、单目标 GWO 算法、单

目标 PSO 算法与所提出模型进行性能对比。双目标

图 7　最优解综合评价指标随 Pareto 最优解变化曲线
Fig. 7　Variation curve of comprehensive evaluation index for 

optimal solution with Pareto optimal solution

图 8　不同特征子集的预测性能指标对比图
Fig. 8　Comparison of prediction performance indexes among 

different feature subsets

图 9　在不同特征子集上各模型预测精度对比图
Fig. 9　Comparison of prediction accuracy across models for 

different feature subsets

（a）MAPE

（b）STD

表 2　HMOGWO-RF 模型特征子集列表
Table 2　List of feature subsets for HMOGWO-RF model

数据集 特征变量 特征数量

S1 EPP，ERP/pH 2

S2 EPP，ρ s，CB，ERP/pH 4

S3 pH，EPP，ρ s，CB，ERP/pH 5

S4 t，pH，EPP，ρ s，CB，ERP/pH 6

S5 T，pH，EPP，ρ s，CB，ERP /pH，CW/(10 ρs) 7

S6 T，pH，EPP，CW，ρ s，CB，ERP/pH，CW/ρ，CW/(10 ρs) 9

S7 所有特征变量 15

S8 原始数据 11

宋福霖，等：基于 HMOGWO-RF 的埋地管道点蚀深度机理-学习预测模型
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图 10　各模型在不同特征子集上的预测值与实际值对比图
Fig. 10　Comparison between predicted values from models and actual values for different feature subsets

（a）S1

（c）S3

（e）S5

（g）S7

（b）S2

（d）S4

（f）S6

（h）S8
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预测性能及稳定性最差。相比于双目标 MOGWO 算

法，双目标 HMOGWO 算法的 MAE、MAPE 与其相当、

R2 较大、MSE、RMSE、STD 较低；与双目标 MOGWO

算法相比，三目标 HMOGWO 算法相的各项误差均较

低、R2 值较大。结合 HMOGWO 算法的混合模型的性

能明显优于采用 MOGWO 算法的混合模型。

 
4　结论 

1）为准确预测管道最大点蚀深度，提出了一种

将腐蚀机理与多目标优化相结合的腐蚀机理引导

HMOGWO-RF 模型，用于预测埋地管道的最大点蚀

深度。根据不同自变量之间的相互作用构造新的特征

变量来建立新的特征空间，然后对特征重要性进行分

析，研究各输入变量的影响程度，并根据重要性排序形

成不同的特征子集。在多目标优化的过程中，该模型

综合考虑了特征数量、预测准确率、模型稳定性 3 个优

化目标，利用油气埋地管道的点蚀数据集验证预测效

果，选择最合适的子集。

2）通过设计综合评价指标的形式评价 Pareto 最

优解的预测性能，发现将工程理论、领域知识集成到

机器学习模型中是改进模型的必要条件。与传统 ML

模型及其他混合模型相比，HMOGWO-RF 模型的

整体预测性能优于传统 ML 模型，该模型的 MAE、

MAPE、MSE、RMSE 和 STD 的最小值分别为 0.008、

0.006、0.003、0.055、0.055，R 2 最高可达 0.999。基于所

建立的数据驱动模型，可以预测所研究管道的最大点

蚀深度。该模型有助于提高管道腐蚀预测的可解释性

与准确性，延长管道使用寿命，可为石油和天然气运输

行业的发展提供技术参考。

算法的优化目标是 MAPE、STD，不考虑特征数。与

双目标算法相比，传统的单目标算法（GWO、PSO）的

优化目标仅为 MAPE，不考虑模型的稳定性。三目标

HMOGWO 算法的最大预测误差值为 0.400 mm，平均

预测误差值为 0.008 m；双目标 HMOGWO 算法的最大

预测误差值为 2.670 mm，平均预测误差值为 0.280 mm；

单目标 GWO 算法的最大预测误差值为 6.050 mm，平

均预测误差值为 1.555 mm。可见，三目标模型的预测

结果最贴近实际值，预测效果更佳。

统计各混合模型的评价指标（图 12），可见相比于

多目标 PSO，单目标 PSO 的误差较大、R2 较小，其整体

图 11　不同混合模型预测结果与实际值对比图
Fig. 11　Comparison between predicted values from different 

hybrid models and actual values

图 12　不同混合模型的评估指标对比图
Fig. 12　Comparison of evaluation indexes for different 

hybrid models

（a）三目标模型

（b）双目标模型

（c）单目标模型
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