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Abstract: [Objective] The centralized supply of hydrogen resources and the rapid growth in market demand have made large-scale hydrogen
transportation via long-distance pipelines a promising trend for future hydrogen energy supply, given its significant economic advantages.
However, during pipeline operation, hydrogen atom permeation in pipeline steel may cause various forms of hydrogen-related damage,
resulting in pipeline failure. Therefore, it is essential to evaluate the pipeline steel adaptability for extended hydrogen-contacting service.
[Methods] An X-ray diffractometer was used to analyze corrosion products on the inner surface of the pipeline in service, followed by
nondestructive testing using ultrasonic waves and digital X-ray imaging. The hydrogen permeation behavior was investigated through in-
situ gas phase permeation tests combined with electron backscatter diffraction analysis. Finally, slow strain rate tensile tests and fatigue crack
propagation tests were conducted at varying hydrogen blending ratios to assess the impact of hydrogen on the tensile and fatigue properties
of 20 steel in service. [Results] Corrosion was observed on the inner surface of 20 steel in service, primarily consisting of iron oxide and
ferroferric oxide. Due to minimal pressure fluctuations and the insignificant effect of alternating loads, no flaw waves were detected in the
pipeline segment, and no internal surface or buried cracks were found. The grain size was small, with high-angle grain boundaries accounting
for 91.7%. The uniformly distributed hydrogen traps effectively reduced the sensitivity to hydrogen embrittlement. [Conclusion] The

hydrogen-induced embrittlement coefficient of 20 steel at a 10% hydrogen blending ratio exceeds 25%, indicating significant degradation of
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plasticity and a higher likelihood of embrittlement under high-stress loading conditions. However, the fatigue crack propagation rate remains

largely unaffected across different hydrogen blending ratios, indicating low sensitivity of hydrogen embrittlement to the change of hydrogen

blending ratio. Consequently, the steel demonstrates a good fatigue property in hydrogen-contacting environments. (11 Figures, 3 Tables,

45 References)
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Fig. 1 Dimensions of specimens for tests in hydrogen-contacting environment
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Table 2 Parameter settings of X-ray imaging detection
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Fig.2 Schematic diagram of high pressure in-situ gas phase
hydrogen permeation test system
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Fig. 3 Macroscopic morphology of Baling—Changling pure
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Fig. 5 Digital X-ray imaging of 20 steel hydrogen transportation pipeline

3
. ZVKWWW
b
R
2|
&
!
0 4 12 16

8
IBATINTE)/d

6 20 WNFEHEEBEZITE AT
Fig. 6 Operating pressure change curve of 20 steel hydrogen
transportation pipeline

2.2 EBSD

H 5 48 56 A4 RL£L 15) -1 18] (RD-TD) ~F 1 15 3
¥ EBSD 4 5 nJ 40 (B 7), A% 20 4 & kL R~ 8%
/N, AR R B K A B A A (High-Angle Grain
Boundaries, HAGBs). X H % % H & 4 i1 d AL ]
Py MR AR B M B F 3 AR R ST R 6.3 um, S 3 R

1122 | Ydcy-paperonce.org

T FA K 21.8 pm®e 1A S o0 A, IRAR 20 BN
HAGBs 7t 24 91.7%, i /) £ FE & 5 (Low-Angle
Grain Boundaries, LAGBs) {5 AN N 8.3% . dAAEN
AR R B, A R IR A, PR ACEE A R )
o2 HCE B (Orientation Map, OM) H1a] L
A IRA% 20 BT IX AH ZUFAE 29 0 40 % A0 32T
ity A E I, —ERE B
PHASZY . Kernel “F3HL A % & (Kernel Average
Misorientation, KAM) 5 fE ki B m 3 fE B (Grain
Orientation Spread, GOS) & 7~ R 1% 20 8447 5 %5 i 4%
i, BA B ST RAR 7341
2.3 SgiEMRE

FHIRA% 20 AN AR 2 S HL I 2 - T] il 42 (1 8) T
a0, BEAE AT R OR, S BN AR 4 L, S iE R
ST LG K. SEMENET BRI L
NEAH, FEZ AR AR AR BOd AR oA BAE




TIUA, S KA I ARG A S VA

Inspection & Integrity | il 5 55 B4

oM Ul GB
001 101
TD
— /M EEG T

100 um RD — KA T
GOS KAM
w0
= o 1s ops"
293303 309119 100 um 0 '
39119 488988

Ca) BRI ) T A 1R ST BT 1) 222 [ LA R BRI 97 e 1

20%
X
=
<
=
- S
(]
= 10% RN
1 © e 2 A X e
g = o 0 K &
© @ =% 2
° g S o © Ne)
= Sx.fasp
2 L .88 a T
SRR
SR 2R «°
Io — —
=)
0 10 20 30 40 50 60
I 2E/(° )
= -
(b) a0 B3 A

7 WSEIER 20 4N EBSD 4R E
Fig.7 EBSD results of 20 steel hydrogen transportation pipeline in service

&4 JE/MPa
g 2.0
<.§§_ 010 —~—40
1
el
2 0.05
=
. *ffw
0 5000 10 000 15000

I ] /s
8 ARIEHETHRZ 20 RSB ML

Fig. 8 Hydrogen permeation curves of 20 steel in service under
varying hydrogen partial pressures

N S0 AL R 11 PO o= R7: W b S RO = i)
D152 GR 3) AT, R4 20 I EY R BOIME N
1.104 X 10" em”s, BEARANZ AN KW, S50
o YUK R o R, R Ay oRiE S
AP EER . 454 EBSD 45 5] H1, 5N
bR SF 5 R S B I HAGBs & S 8UR% 20 AT
BR BB AR I B ], L SR I H s S B A A o
SAEAEN N I ORI /N, AH [ ) N 3 B8 R
TN AR [X (A A BN, S A IR A A 7 4niE
ITE IO ES 5, iRA% 20 X TE R I S P 35
To 5 3 B, AR T TR BRI A KRR, R
TEBRL AR RE
#3 RE20 NEZENNFESHE

Table 3 Kinetic parameters of hydrogen permeation in 20 steel

in service
Ao/ D/ C,/ N,/
MPa (10 °em®™s ) (umol-cm ™) (umol -ecm ™)
0.4 1.036 0.060 2.466
0.8 0.876 0.116 5.623
2.0 1.039 0.179 7.291
4.0 1.465 0.178 5.141
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Fig. 10 Fracture morphology of 20 steel specimen at varying hydrogen blending ratios
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