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基于 KNN 和随机森林算法的腐蚀泄漏风险软检测模型
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摘要：【目的】城镇燃气管网完整性管理需要有效的风险评价方法，腐蚀泄漏风险评价需要将风险评价因子

充分与各项检测业务相结合，然而当前检测数据繁杂且缺失严重，亟需一种可预测并评价腐蚀泄漏风险的方

法。【方法】通过相关性分析，筛选出与腐蚀泄漏风险相关的关键指标，结合管道本体数据与周围环境数据，采用

KNN（K-Nearest Neighbor）与随机森林算法，建立智能软检测模型。【结果】该模型能够对缺失检测数据进行预

测，实现关键指标的间接测量，模型预测值与真实测量值的相对误差小于 25％，达到合格水平。该模型可在数据

缺失情况下有效预测管道腐蚀泄漏风险，为定量评价奠定基础。与前人研究相比，模型在多因素耦合关系提取

与算法选择上进行创新，提高了预测的准确性与可靠性。然而，部分异常数据表明该模型在某些条件下的预测

能力有限，且模型依赖于数据完整性和准确性。设法提高检测数据数量和质量，优化关键风险指标特征提取方

法，可以进一步提高模型精度。【结论】丰富了燃气管道腐蚀泄漏风险预测理论，在提高管道运行安全性与可靠

性方面具有实用价值，未来应着重改进数据采集和分析技术，进一步优化模型结构，提升其在不同应用场景下的

适应性与准确性。（图 10，表 6，参 25）
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Abstract: [Objective] The integrity management of urban gas pipeline networks demands effective risk assessment methods. Corrosion 

leakage risk assessment necessitates the comprehensive integration of risk assessment factors with various detection operations. Current 

detection tasks face challenges due to data complexities and significant data deficiencies. Therefore, it is vital to develop a method for 

predicting and evaluating corrosion leakage risks. [Methods] Key indicators associated with corrosion leakage risks were selected through 

a correlation analysis. These identified indicators were then employed to develop an intelligent soft detection model that integrates 

pipeline and environmental data, based on the K-Nearest Neighbor (KNN) and Random Forest algorithms. [Results] The model conducted 

predictions on missing detection data and achieved indirect measurements of key indicators, with a relative error between predicted and 

measured values staying below 25%, meeting acceptable standards. It effectively forecasts pipeline corrosion leakage risks in instances 

of missing data, paving the way for additional quantitative assessments. In comparison to prior research, the model displayed enhanced 

prediction accuracy and reliability, attributed to innovations in extracting multi-factor coupling relationships and algorithm choices. 

Nonetheless, the emergence of some abnormal data suggested constraints on its predictive capacity under specific circumstances and its 

dependence on complete and precise data. Consequently, enhancing both the quantity and quality of detection data, along with refining 

the feature extraction approach for key risk indicators, is anticipated to further boost the accuracy of the model. [Conclusion] This 

research enriches the risk prediction theory concerning corrosion leakage in gas pipelines and offers practical benefits in enhancing 

引文：杨阳，李成志，杜选，等. 基于 KNN 和随机森林算法的腐蚀泄漏风险软检测模型[J]. 油气储运，2024，43（9）：1064-1072.
YANG Yang, LI Chengzhi, DU Xuan, et al. Soft detection model of corrosion leakage risk based on KNN and random forest algorithms[J]. 
Oil & Gas Storage and Transportation, 2024, 43(9): 1064-1072.
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随着社会经济水平不断发展，燃气作为主要消耗

能源的比例持续增长，燃气管道作为燃气的传输载

体，已成为重要的城市基础设施之一。埋地钢质管道

长期埋于地下，随着时间推移，在施工、地形沉降、土

壤腐蚀环境等因素影响下，存在发生泄漏的风险，可

能给燃气公司与人民群众带来严重损失[1]。定期对燃

气管道实施腐蚀泄漏检测，定量评价燃气管道腐蚀泄

漏风险，可为埋地管道的维护管理提供科学依据，减

少潜在的不安全隐患，对于保证燃气管网安全运行具

有重大意义[2]。

由于城镇燃气埋地管道具有复杂性与隐蔽性，目

前缺乏适用于燃气管道的腐蚀泄漏检测技术[3]。近

年来，基于数据驱动的管道腐蚀泄漏检测算法得到了

广泛研究与应用，该类方法通常使用压力、流量、声音

等时域信号数据检测管道的腐蚀泄漏[4-5]，仅针对已

发生泄漏的管段。从风险管控角度考虑，如设法利用

管道检测数据预测泄漏风险，可将风险前置，提前采

取风险防控手段。但受管道压力检测与防腐检测的

检测成本、人力与设备资源、技术可行性等条件限制，

实际开展检测的管道仅占燃气管网约 15％[6]，且有

大量数据未被很好地开发利用。机器学习技术的发

展为实现燃气管道腐蚀泄漏软检测提供了可能。目

前，KNN（K-Nearest Neighbor）算法与随机森林算

法在故障诊断与预测方面得到了广泛应用，其可靠性

与准确性已得到验证[7]，相对误差基本小于 0.25，但

上述算法尚未在管道腐蚀泄漏风险预测领域投入应

用。在此，提出一种燃气腐蚀泄漏软检测模型，利用

相关系数法从关键腐蚀泄漏风险指标的影响特征集

中剔除不相关及冗余的影响特征，提取出最能代表某

种腐蚀泄漏风险的低维主特征，即将大量腐蚀泄漏检

测数据及管道内外部数据降维，导入 KNN 或随机森

林中，作为软检测模型的输入，得到与腐蚀泄漏风险

强相关但未检出数据的预测值，进一步进行腐蚀泄漏

风险指标的风险值计算，以期为泄漏风险定量评价提

供有效补充。

1　模型建立 

1.1　指标选取

泄漏风险指标的数量会影响风险评估结果，过多

将造成风险信息冗余，过少则缺失风险信息[8]。通过对

燃气管道泄漏风险影响因素与检测项目进行双向整合，

结合事故数据库，对燃气管道泄漏事故进行原因分析，

将燃气管道泄漏风险影响因素概括成 11 个风险强度指

标，以表征管道泄漏影响的 11 个方面，即土壤腐蚀性风

险强度、杂散电流干扰风险强度、防腐层风险强度、阴极

保护风险强度、管道本体风险强度、庭院线环境风险强

度、地质沉降风险强度、地质扰动风险强度、天气风险强

度、施工风险强度、穿跨越风险强度。对指标进行分类

时，通常需考虑必要性、重要性、测量难度[9]。其中，必

要性指国家规定检测的指标，重要性指与风险相关的

重要指标，测量难度考虑检测的技术难度与成本要求。

必要性通常是无法改变的，因此，从指标的重要性和测

量难度对指标进行分类（图 1），可见土壤腐蚀性风险强

度、杂散电流干扰风险强度、防腐层风险强度指标的重

要性相对较高、测量难度相对较低，最适合作为泄漏风

险关键指标。在确定风险强度关键指标后，针对关键指

标对应的检测项目数据、本体数据及周围环境数据，利

用皮尔逊相关系数进行多因素耦合研究，精简软检测模

型的数据输入内容，并通过分别构建关键指标的影响因

素体系，利用 KNN 算法和随机森林算法搭建软检测模

型，对未能检测的重要数据进行预测。

图 1　腐蚀泄漏风险强度指标分类示意图
Fig. 1　Classification of corrosion leakage risk intensity indicators

pipeline operation safety and reliability. Future research efforts should focus on enhancing data acquisition and analysis techniques, 

optimizing the model structure, and improving the model adaptability and accuracy across various application scenarios. (10 

Figures, 6 Tables, 25 References)

Key words: urban gas pipeline network, K-Nearest Neighbor (KNN), random forest, leakage risk, soft detection, quantitative risk 

assessment
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1.2　多因素耦合关系

相关系数最早由统计学家卡尔 ·皮尔逊设计，是研

究变量之间线性相关程度的量。由于研究对象的不同，

相关系数有多种定义方式[10]，统计学中常用的 3 种相关

系数为皮尔逊相关系数（Pearson Correlation Coefficient, 

PCC）、斯皮尔曼秩相关系数（Spearman’s Rank Correlation 

Coefficient, SRCC）及肯德尔相关系数（Kendall Rank 

Correlation Coefficient, KRCC）[11]。PCC 适用于连续数据、

服从正态分布、线性关系的情况；SRCC 利用两变量的

秩次大小作线性相关分析，适用范围较广，但对于线

性关系的数据统计效能较低；KRCC 则适用于 2 个分

类变量均为有序分类的情况[12-14]。利用线性判别分

别分析腐蚀检测数据、管道本体数据、周围环境的关

联度，腐蚀泄漏相关数据更符合线性关系[15]，因此选

择 PCC，其表达式为：

r＝
σX

2σY
2

σXY                                 （1）

式中：r 为 PCC；σXY 为变量 X 与变量 Y 的协方差；

σX
2、σY

2 分别为变量X、变量Y 的方差。

当 r>0 时，两个变量正相关；当 r<0 时，两个变

量负相关；当 r=0 时，两个变量不相关。r 的绝对值越

大，相关性越强（表 1）[16]。

利用皮尔逊相关系数研究检测数据、管道本体数

据、周围环境数据的多因素耦合关系，可以了解各部分

数据的相关性，剔除相关性较大的外部数据，关注与

关键风险指标及其对应检测内容最强相关的外部数

据。根据相关性，从关键风险指标的影响特征集中剔

除不相关或冗余的影响特征，提取出易于识别的低维

主特征。

1.3　软检测模型

1.3.1　 算法理论基础

在建立软检测模型过程中，涉及到 KNN 算法与

随机森林算法。KNN 算法通过测量不同特征值之间

的距离对其进行分类，如果一个样本在特征空间中的

k 个最相似（即特征空间中最邻近）样本中的大多数属

于某一个类别，则该样本也属于这个类别，其中 k 通常

是不大于 20 的整数[17]。KNN 算法中所选择的临近

样本均是已正确分类的对象，该方法在定类决策上只

依据最邻近的一个或者几个样本的类别决定待分样本

所属的类别。在 KNN 中，通过计算对象间距离作为

各个对象之间的非相似性指标，避免了对象之间的匹

配问题[18]。同时，KNN 通过依据 k 个对象中占优的

类别进行决策，而不是单一的对象类别决策。这两点

就是 KNN 算法的优势[19-21]。

随机森林是一种有监督学习算法，具有操作简

单、预测精度高且能够对评价指标重要性进行识别等

特点[22]。该算法在应用时创建一个包含多个决策树

的分类器，使其拥有某种方式的随机性，其输出的类别

由个别树输出类别的众数决定[23-24]。随机森林算法的

本质是对决策树算法的优化，将多棵决策树组合在一

起，每棵树的形成均取决于一个独立抽出的样本。每

棵树均具有相同的分布，分类误差依赖于每棵决策树

对类别划分的能力及决策树之间的关联性[25]。

1.3.2　模型结构

燃气管道腐蚀泄漏软检测模型利用相关系数法，

从关键腐蚀泄漏风险指标的影响特征集中剔除不相关

及冗余的影响特征，提取出最能代表腐蚀泄漏风险的

低维主特征，然后根据风险强度指标对提取的特征进

行匹配选择，利用典型的机器学习算法，对与腐蚀泄漏

风险强相关但未检测出的数据进行预测，最终用于燃

气泄漏风险评价（图 2）。

图 2　燃气管道腐蚀泄漏软检测模型结构图
Fig. 2　Structure of soft detection model for corrosion leakage of 

gas pipeline

表 1　皮尔逊相关系数绝对值与相关性对应关系表
Table 1　Correspondence between Pearson correlation 

coefficients (absolute values) and correlation levels

|r | 相关性

（0.8，1.0] 非常强相关

（0.6，0.8] 强相关

（0.4，0.6] 中等相关

（0.2，0.4] 弱相关

[0，0.2] 非常弱相关或不相关
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2　案例分析 

2.1　数据预处理

2.1.1　数据收集

在对管道腐蚀泄漏风险进行预测时，需要收集的

数据包括：①管道本体数据，指管道投入生产运行时的

初始状态信息，包括管道的投运年限、管径、管材、压力

级制、管理单位及埋深。②管道检测数据，包括防腐检

测、压力管道检测、动态杂散电流专项检测数据及日常

检测数据。其中，防腐检测是针对中低压管道的检测，

压力管道检测是针对次高压及以上管道的检测，其数

据包括土壤腐蚀性检测数据、静态杂散电流检测数据、

防腐层检测数据、阴保设施检测数据等。③周围环境

数据，包括地铁运行与分布、铁路分布、水系面、无轨电

车及充电桩等电气化设备数据、地质沉降、地质扰动、管

道穿跨越、天气、施工、庭院线所对应的小区属性数据。

2.1.2　数据相关性分析

2.1.2.1　本体数据

本体数据可用特征共有 6 个，分别为年份、管材、

管径、压力水平、管理单位、管道埋深。其中，管理单位

按照公司实际行政级别进行等级划分，并对等级进行

数字化处理。由管道本体数据相关系数（图 3）可见，压

力水平与管径的相关系数最大，为 0.332 621，可以判

定本体数据各特征之间存在较弱的相关性，全部保留。

2.1.2.2　检测数据

对于土壤腐蚀性检测与静态杂散电流检测，相关

可用检测项有仪器显示值、土壤电阻率、直流电位径向

梯度、直流电位纵向梯度。分析各检测项之间的相关

性（图 4）可见，仪器显示值与土壤电阻率的相关系数为

0.667 109，存在强相关。由于土壤电阻率是基于仪器显

示值、地表至某土层深度、测量仪电极的距离等计算出

的一段管段附近土壤电阻率平均值，相对于仪器显示值

更具有代表性，因而在后续研究中仅关注土壤电阻率。

检测防腐层时，可判断检测点为破损点的检测项

有：开始电位、衰减后电位、电位差、绝缘电阻值、破损

统计。其中，电位差为开始电位与衰减后电位之差，绝

缘电阻值由工作人员结合电位差与工作经验估计得

出。分析各检测项之间的相关性（图 5）可见，各检测

项之间的相关性很强，特别是开始电位与衰减后电位

的相关系数达 0.963 467。由于电位差在不同时刻的测

量值不同，在后续研究中选择能够清楚反映管道防腐

层破损情况的绝缘电阻值作为研究因素。

评价阴保设施状态的检测项有：保护电位、阳极开

路电位、阳极输出电流。分析各检测项之间的相关性

（图 6）可见，保护电位与阳极开路电位之间的相关性

系数为 0.78，二者强相关，选取其中 1 个作为阴保设施

检测的相关因素。

2.1.2.3　周围环境数据

周围环境数据可用特征共有 14 个，分别为距离样

本点最近的 5 个充电桩距离 cd1、cd2、cd3、cd4、cd5，距

离样本点最近的地铁距离 ddis，500 m、1 000 m 范围内

的地铁数量 d500、d1000，距离样本点最近的铁路距离

tdis，700 m内是否有铁路 d700（无、有时分别取值 0、1），

图 3　管道本体数据相关系数图
Fig. 3　Correlation coefficients of pipeline data

图 4　土壤腐蚀性检测项相关系数图
Fig. 4　Correlation coefficients of soil corrosivity detection data

图 5　防腐层检测项相关系数图
Fig. 5　Correlation coefficients of anti-corrosive coating detection data

图 6　阴保设施检测项相关系数图
Fig. 6　Correlation coefficients of cathodic protection detection data
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2.2　构造关键指标软检测模型

2.2.1　土壤腐蚀性风险强度

土壤腐蚀性风险强度数据包括土壤电阻率、最近水

系面距离、水系面积及水系面长度。其中，最近水系面

距离、水系面积、水系面长度是完整且客观的，无需对数

据进行额外补充处理；土壤电阻率在实际检测中是通过

不连续采集获得的，并未覆盖全部管道，因此需要通过

建立土壤电阻率软检测模型的方式，对未检测土壤电阻

率的管段进行补充。对目前获取的 2 912 条原始土壤电

阻率数据进行整合，由于数据的来源不尽相同，格式包括

各种形式的电子文档与纸质检测报告，在使用数据之前，

需对原始检测数据进行数据整合与正确性校验，分析异

常值，并利用正则表达式将其转换为正确格式。通过数

据整合，最终得到可用的土壤电阻率检测数据 2 912 条，

数据输出为 Excel 格式（表 2）。

由于土壤电阻率与其位置信息有着密切的关联，在

对土壤电阻率进行预测时，采用 KNN 算法搭建土壤电

阻率软检测模型，采用最近邻算法，即 k=1，对未检测点

的土壤电阻率进行预测并补充数据。根据 GB/T 21447—

2018《钢质管道外腐蚀控制规范》中的定义，对土壤电阻

率进行分级（表 3），同时基于该标准统计各检测点分级

情况，等级为 1、2、3 的监测点数目分别为 43、375、2 494。

在建立土壤电阻率软检测模型时，针对上述 2 912 个

检测样本，利用其中的 2 184 个样本进行训练及交叉

验证，构建土壤电阻率软检测模型。之后，利用剩余的

728 个样本数据对软检测模型预测结果进行验证，准

确率为 0.78。

2.2.2　杂散电流干扰风险强度

在对未检测点所在管段进行杂散电流评分时，其

基础是已检测点的杂散电流特征，因此建立杂散电流

图 7　周围环境特征相关系数图
Fig. 7　Correlation coefficients of environmental data

表 2　土壤电阻率检测数据表（部分）
Table 2　Soil resistivity detection data (partial)

表 3　土壤电阻率及腐蚀性分级表
Table 3　Classification of soil resistivity and corrosive property

管段
编号

土壤电阻率/
（Ω ·m）

坐标 数据来源或
数据库名称x y

1 71.000 503 761.59 307 201.66 word
2 73.000 504 519.49 304 619.07 word
3 60.000 505 102.96 303 960.47 word

… … … … …

330 121.832 517 586.76 289 498.04 n1516
331 128.112 516 760.24 289 207.53 n1516
332 133.136 515 538.46 290 712.47 n1516
… … … … …

1 876 91.688 529 160.72 283 309.18 hbase
1 877 89.678 529 668.74 280 087.98 hbase
1 878 115.552 529 666.49 280 702.08 hbase
… … … … …

2 299 8.792 504 303.56 284 174.05 动态杂散电流检测

2 300 10.676 530 326.01 302 429.88 动态杂散电流检测

2 301 13.816 513 358.47 315 916.48 动态杂散电流检测

… … … … …

等级 腐蚀性 土壤电阻率/（Ω ·m）

1 弱 大于 50
2 中等 20~50
3 强 小于 20

2 000 m 范围内的铁路数量 d2000，离样本点最近的水

系的距离 dis、面积 are、长度 long。分析上述特征之间

的相关性（图 7）可见，距离样本点最近的 5 个充电桩

距离之间存在极强的相关性，因此仅保留其中 1 个，即

最近充电桩距离；离样本点最近的一条水系的面积与

长度之间的相关系数为 0.57，存在中等程度的相关性，

暂且保留；500 m 内地铁数量与 1 000 m 内地铁数量的

相关系数为 0.72，存在强相关，保留其中 1 个。
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基于上述特征，经过多次模型调参迭代，搭建的高

压/次高压管道直流干扰风险强度软检测模型为随机森

林模型，设置树个数为 5（Tree 0~Tree 4），将特征投

射到二维平面，为更好地解释该模型的分类过程，对模

型的过程与结果进行可视化呈现（图 8）。分类结果图的

划分是一个综合判断过程，其划分依据由的划分结果投

票判断所得。已检测次高压/高压管道共 313 个样本，在

建模时，用其中 250 个样本进行训练及交叉验证，利用

剩余63个样本对搭建的软检测模型预测结果进行验证，

准确率为 0.82。

中压/低压管道直流干扰风险强度软检测模型为

随机森林模型，设置树个数为 5，将特征投射到二维平

面可视化呈现（图 9），可见，与高压/次高压管道直流

干扰风险强度软检测模型类似。已检测中低压管道共

341 个样本，利用其中 272 个样本数据进行训练与交叉

验证，其他 69 个样本对搭建的软检测模型预测结果进

行验证，准确率为 0.753 6。

2.2.3　防腐层风险强度

在防腐层风险强度指标计算相关影响因素中，防

直流干扰风险强度软检测模型是评价杂散电流风险强

度的关键。首先对检测数据进行数据预处理。在杂散

电流检测中，土壤电阻率数据是缺失的，基于上述土壤

电阻率KNN软检测模型，对缺失数据进行填补（表 4）。

在搭建杂散电流直流干扰风险强度软检测模型

前，先对其进行特征分析，可以发现高压/次高压管道

与中/低压管道的杂散电流干扰差异明显，因此在搭建

直流干扰风险强度软检测模型时，应分别基于二者数

据建立模型。考虑到特征之间存在高度相关性，在建

模前进行特征选取工作（表 5、表 6）。

表 4　杂散电流检测土壤电阻率 KNN 填补表
Table 4　KNN-based complement of soil resistivity for stray 

current detection

年份 位置
最近充电桩
距离/km

土壤电阻率/
（Ω ·m）

数据源
直流干扰
风险

2014 地下 682.466 738 20 35.168 实际检测 弱

2012 地下 379.442 907 00 70.336 实际检测 欠保护

2012 地下 379.498 336 70 70.336 实际检测 欠保护

2012 地下 216.817 922 50 91.688 实际检测 欠保护

2012 地下 58.688 686 64 75.360 实际检测 弱

2007 地下 218.400 991 20 64.000 软检测 弱

2007 地下 898.149 822 60 111.784 软检测 欠保护

1971 地下 12.449 029 21 45.216 实际检测 弱

1971 地下 496.895 710 50 138.160 实际检测 弱

1971 地下 156.543 996 60 27.632 实际检测 弱

1971 地下 640.446 737 80 20.096 实际检测 欠保护

表 5　中高压/次高压管道直流干扰风险强度软检测模型所用
特征表

Table 5　Features in soft detection model for DC interference 
risk intensity of MP and HP/Sub-HP pipelines

表 6　中压/低压管道直流干扰风险强度软检测模型所用特征表
Table 6　Features in soft detection model for DC interference 

risk intensity of MP/LP pipelines

特征名称 含义 特征名称 含义

x 横坐标 Subway line 地铁线路

y 纵坐标 flow 载客量

dis 最近水系面距离 date 地铁投运年限

are 水系面积 R 土壤电阻率

ddis 最近地铁距离 place 纵向位置

d500 500 m 内地铁个数 cd 最近充电桩距离

tdis 最近铁路距离 management 管理单位

d700 700 m 内是否有铁路

特征名称 含义 特征名称 含义

x 横坐标 d700 700 m 内是否有铁路

y 纵坐标 flow 载客量

dis 最近水系面距离 date 地铁投运年限

are 水系面积 R 土壤电阻率

ddis 最近地铁距离 place 纵向位置

d500 500 m 内地铁个数 cd 最近充电桩距离

tdis 最近铁路距离

图 8　高压/次高压管道直流干扰风险强度软检测模型分类
可视化图

Fig. 8　Visualized classification of soft detection model for DC 
interference risk intensity of HP/Sub-HP pipelines

（a）Tree 0

（c）Tree 2

（e）Tree 4

（b）Tree 1

（d）Tree 3

（f）随机森林
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腐层绝缘电阻起到决定性的作用。而防腐层绝缘电阻

这一检测指标在实际检测中并未覆盖到全部管道，因

此需要对防腐层绝缘电阻建立软检测模型，从而对未

检测防腐层绝缘电阻的管段进行补充。对已检测的防

腐层绝缘电阻数据进行整合，最终得到 9 972 条数据。

基于上述数据，收集与燃气管道防腐层绝缘电阻相关

的特征数据，包括以管道压力级制、管径、投运年限、管

理单位等为代表的管道本体属性数据与以管道与最近

水系面、附近地铁、电气化铁路的位置关系等为代表的

管道周边环境数据。选取原则包括：①选择对燃气管

道腐蚀泄漏风险影响大的数据和管道泄漏后显著影响

周围环境的数据；②遵守燃气公司管道腐蚀泄漏风险

管控的管理规范、技术规程与数据规范；③参考管道泄

漏失效领域的专家意见。

基于燃气管道内、外部数据，通过随机森林算法搭

建软检测模型。针对已检测管道共计 9 972 个检测样

本，其中 8 972 个样本用于进行训练及验证，构建防腐

层绝缘电阻软检测模型；剩余 1 000 个样本用于对搭建

的软检测模型预测结果进行验证，结果显示，相关系数

为 0.93，一致性系数为 0.829 3（图 10）。

 
3　结论 

1）为实现燃气管道腐蚀泄漏风险的预测，提出了

一种基于多因素耦合关系提取、KNN 算法与随机森

林算法的腐蚀泄漏风险软检测模型。该模型利用管道

腐蚀检测数据，对土壤腐蚀风险强度、杂散电流干扰风

险强度及防腐层风险强度等重点检测内容进行预测，

实现了难测量要素值的数学预测，预测值与真实测量

值的相对误差小于 25％，精度达到了合格水平，显示

了模型在燃气管道腐蚀泄漏风险预测中的普遍适用

性。然而，部分异常数据表明模型在某些条件下的预

测能力有限，且模型性能依赖于检测数据的完整性和

准确性。

2）与以往研究相比，该模型在构建方法与算法选

择上有所创新，结合了多因素耦合关系提取与先进的

机器学习算法，在模型构建过程中强调了关键风险指

标影响特征选取的重要性，提高了预测的准确性与可

靠性。该模型在理论上丰富了燃气管道腐蚀泄漏风险

预测的理论框架，在应用方面提高了管道运行的安全

性和可靠性，具有显著的实用价值。在未来进一步研

究中，建议增加并完善腐蚀检测数据，探索更多关键风

险指标的影响特征，优化特征提取方法，并结合其他先

进机器学习算法以提升模型的预测精度及稳定性，从

而提升燃气管道腐蚀泄漏风险预测的整体水平，确保

管道的安全运行。
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