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Abstract: [Objective] The integrity management of urban gas pipeline networks demands effective risk assessment methods. Corrosion
leakage risk assessment necessitates the comprehensive integration of risk assessment factors with various detection operations. Current
detection tasks face challenges due to data complexities and significant data deficiencies. Therefore, it is vital to develop a method for
predicting and evaluating corrosion leakage risks. [Methods] Key indicators associated with corrosion leakage risks were selected through
a correlation analysis. These identified indicators were then employed to develop an intelligent soft detection model that integrates
pipeline and environmental data, based on the K-Nearest Neighbor (KNN) and Random Forest algorithms. [Results] The model conducted
predictions on missing detection data and achieved indirect measurements of key indicators, with a relative error between predicted and
measured values staying below 25%, meeting acceptable standards. It effectively forecasts pipeline corrosion leakage risks in instances
of missing data, paving the way for additional quantitative assessments. In comparison to prior research, the model displayed enhanced
prediction accuracy and reliability, attributed to innovations in extracting multi-factor coupling relationships and algorithm choices.
Nonetheless, the emergence of some abnormal data suggested constraints on its predictive capacity under specific circumstances and its
dependence on complete and precise data. Consequently, enhancing both the quantity and quality of detection data, along with refining
the feature extraction approach for key risk indicators, is anticipated to further boost the accuracy of the model. [Conclusion] This

research enriches the risk prediction theory concerning corrosion leakage in gas pipelines and offers practical benefits in enhancing
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pipeline operation safety and reliability. Future research efforts should focus on enhancing data acquisition and analysis techniques,

optimizing the model structure, and improving the model adaptability and accuracy across various application scenarios. (10

Figures, 6 Tables, 25 References)

Key words: urban gas pipeline network, K-Nearest Neighbor (KNN), random forest, leakage risk, soft detection, quantitative risk

assessment
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Fig. 1 Classification of corrosion leakage risk intensity indicators
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Fig.2 Structure of soft detection model for corrosion leakage of
gas pipeline
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Fig.3 Correlation coefficients of pipeline data
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Fig.4 Correlation coefficients of soil corrosivity detection data

AL 577 65 V22 6T 5 T S T 00 g B A 4 A6 0 50
A TG BT ZE 5 AL FRAL 22 | 40 25 P RELAE L 457
giit. b, mALZEONTTAR FEAL S G AL 2, 4
GRHE TN A GaA 2z S TAERKMA TS
o 73 B SR T2 [R) AR S A (I 5) R AL, 45
T 2 V6 (R AR DR PR AR 5, R 9 S O i L A6 5 ik e HELAE
IR R EUE 0.963 467, HI T HUALZEAE AN [F]I Z1
AL, 75 J5 SEWEFE b 6 35 RE 08 15 2 I i B TS
JEBAG DL e 2% B BB A TR R

PANGLEA —0.032 823 —0.040 947 0.002 909
TP SE WAL 0.089 320 0.104 967
A 7 —0.032 823 0.411 797
A B —0.040 947 0.089 320 0.344 772
WGt —0.002909 —0.104 967 0.411 797
FEUGERAL RS H L A 2E A PHAY MRS

AHIEM:

[ |

0 0.5 1

B 5 FpEERNIE X REE
Fig.5 Correlation coefficients of anti-corrosive coating detection data
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Fig. 6 Correlation coefficients of cathodic protection detection data
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Fig. 7 Correlation coefficients of environmental data
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Fig. 9 Visualized classification of soft detection model for DC
interference risk intensity of MP/LP pipelines
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Fig. 10 Verification of prediction effect of soft detection model for
insulation resistance of anti-corrosive coating
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