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Abstract: [Objective] Engineering vehicles operating on large-scale construction sites in high-consequence areas pose severe safety hazards
to buried pipelines. This paper addresses the shortcomings of current common techniques for detecting overlapped targets of engineering
vehicles and target detection in scenarios with varying sunlight, highlighting issues such as high miss rates and low detection accuracies.
The paper introduces a target detection method for engineering vehicles named YOLO-MMCE, which is based on an improved version
of YOLOVS. This method focuses on recognizing four main types of engineering vehicles: excavators, loaders, rollers, and heavy trucks.
[Methods] The Mosaic + Mixup combined data augmentation approach was adopted to improve the model’s adaptability to diverse scenarios
and strengthen its robustness and generalization in intricate real-world settings and ambiguous conditions. In response to challenges
pertaining to overlapping targets and inconspicuous features due to illumination variations, a coordinate attention (CA) mechanism was
integrated into the YOLOvVS network model to amplify its feature extraction capacity. Additionally, to improve the regression accuracy
of prediction borders, an Efficient Intersection over Union (EIOU) function was incorporated to calculate the width-height difference
between prediction and real borders to replace the aspect ratio, thus further elevating the detection accuracy of the algorithm. [Results]

The YOLO-MMCE algorithm was validated using the datasets comprised of construction site photos captured by surveillance cameras in
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the high-consequence areas along the Lanzhou-Zhengzhou-Changsha product oil pipeline. The results revealed precision enhancements in

engineering vehicle target detection under real-world conditions, resulting from the YOLOVS algorithm improvements in three aspects. These

advancements led to an overall Mean Average Precision (mAP) of 84.8%, a 6.9% increase over the original YOLOVS algorithm. The target

detection mAPs for excavators, loaders, rollers, and heavy trucks were raised by 4.4%, 7.5%, 9.5%, and 6.0% respectively. [Conclusion]

The YOLO-MMCE algorithm provides an efficient solution for detecting overlapped targets and engineering vehicle targets in environments

with varying sunlight conditions, illustrating its values in practical applications. (3 Figures, 5 Tables, 28 References)

Key words: YOLOVS, engineering vehicle, data augmentation, coordinate attention (CA) mechanism, loss function
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Table 1 Experimental comparison of data augmentation

Mosaic9 tufl  Mixup Hil mAPO0.5 mAP(0.5:0.95)

100% 0 78.4% 52.1%
90% 10% 80.7% 54.0%
80% 20% 79.0% 53.0%
70% 30% 82.1% 54.6%
60% 40% 80.3% 54.6%
50% 50% 79.6% 55.1%
40% 60% 81.1% 53.6%
30% 70% 80.1% 51.1%
20% 80% 80.6% 51.9%
10% 90% 77.7% 49.6%
0 100% 70.4% 45.1%

B, X 12 B 4 SR U B Mosaic9 8% Mixup /75
AT H5CHE 1 50T RG P A s SO R, 2 R 78.4 %
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Table2 Experimental comparison of different attention mechanism

FER LA
mAP0.5

FE(YOLOvS)  SE
77.9%
51.5%

ECA CBAM CA

78.7% 79.9% 78.9% 80.5%

mAP(0.5:0.95) 51.9% 52.6% 52.7% 54.1%
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Table 3 Experimental comparison of different loss function

343

Jrik CIoU EIOU
mAP0.5 77.9% 78.9%
mAP(0.5:0.95) 51.5% 52.8%
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Table 4 Comparison with experimental results for 4 types of construction vehicles before and after YOLOvVS Model Improvement

TREZE4 e [EEES mAP0.5 mAP(0.5:0.95)
el YOLOv5 YOLO-MMCE  YOLOv5 YOLO-MMCE YOLOv5 YOLO-MMCE  YOLOv5 YOLO-MMCE
AL 88.7% 87.7% 75.0% 84.6% 85.9% 90.3% 51.5% 52.6%
LML 92.6% 90.2% 65.5% 74.7% 78.3% 85.8% 48.8% 56.7%
FE#EHL 96.4% 96.1% 58.6% 60.3% 64.7% 74.2% 51.6% 55.2%
BHELE 89.9% 88.2% 70.6% 81.6% 82.9% 88.9% 54.0% 57.2%
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Table 5 Comparison of dataset performance among algorithms

e
Jiik K A% mAPO.5 FPS ﬂﬁﬁ'ﬁj‘d‘/
SSD 91.4% 63.9% 77.1% 748 93.1

YOLOv3-ting 84.2% 66.4% 74.1% 121.9 16.9

YOLOvS — 91.9% 674% 77.9% 787 13.7

YOLO-MMCE 90.5% 75.3% 84.8%  65.4 13.8
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