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面向高后果区工程车辆视觉检测的 YOLO-MMCE 算法

孙卉梅1　刘路1　王德刚2　王太勇3

1. 天津职业技术师范大学机械工程学院；2. 国家管网集团北方管道有限责任公司长沙输油气分公司；3. 天津大学机械工程学院

摘要：【目的】高后果区大型施工现场的工程车辆给埋地管道带来严重的安全隐患。针对当前常用方法在工程车

辆重叠目标检测和日照变化场景下的目标检测方面存在漏检率高、检测精度低的问题，以挖掘机、装载机、压路

机及重型货车 4 类常见工程车辆作为识别对象，提出了一种基于改进 YOLOv5 的工程车辆目标检测方法——

YOLO-MMCE。【方法】采用 Mosaic+Mixup 结合的数据增强方式，增强对不同场景的适应能力，提高模型在实

际复杂环境和模糊情况下的鲁棒性和泛化性。针对目标重叠和光照变化导致的特征不明显问题，在 YOLOv5 网

络模型中引入坐标注意力（Coordinate Attention, CA）机制，增强网络模型的特征提取能力；为了提升预测边框回

归精度，引入了高效率交并比（Efficient Intersection over Union, EIOU）函数，计算预测框与真实框的宽高差异值

并取代纵横比，进一步提高算法检测精度。【结果】以兰郑长成品油管道高后果区监控摄像机获取的施工现场照

片为数据集，对 YOLO-MMCE 算法进行验证。结果表明，对 YOLOv5 算法 3 个方面的改进均能提高其在实际工

况下工程车辆目标检测的精度，总体平均精度均值（Mean Average Precision, mAP）达到 84.8％，比原始 YOLOv5
算法提高了 6.9％。对挖掘机、装载机、压路机及重型货车的目标检测 mAP 分别提高了 4.4％、7.5％、9.5％、6.0％。

【结论】YOLO-MMCE 算法有效解决了重叠目标检测和日照变化场景下的工程车辆目标检测问题，具备实际应用

价值。（图 3，表 5，参 28）
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Abstract: [Objective] Engineering vehicles operating on large-scale construction sites in high-consequence areas pose severe safety hazards 

to buried pipelines. This paper addresses the shortcomings of current common techniques for detecting overlapped targets of engineering 

vehicles and target detection in scenarios with varying sunlight, highlighting issues such as high miss rates and low detection accuracies. 

The paper introduces a target detection method for engineering vehicles named YOLO-MMCE, which is based on an improved version 

of YOLOv5. This method focuses on recognizing four main types of engineering vehicles: excavators, loaders, rollers, and heavy trucks. 

[Methods] The Mosaic + Mixup combined data augmentation approach was adopted to improve the model’s adaptability to diverse scenarios 

and strengthen its robustness and generalization in intricate real-world settings and ambiguous conditions. In response to challenges 

pertaining to overlapping targets and inconspicuous features due to illumination variations, a coordinate attention (CA) mechanism was 

integrated into the YOLOv5 network model to amplify its feature extraction capacity. Additionally, to improve the regression accuracy 

of prediction borders, an Efficient Intersection over Union (EIOU) function was incorporated to calculate the width-height difference 

between prediction and real borders to replace the aspect ratio, thus further elevating the detection accuracy of the algorithm. [Results] 

The YOLO-MMCE algorithm was validated using the datasets comprised of construction site photos captured by surveillance cameras in 

引文：孙卉梅，刘路，王德刚，等. 面向高后果区工程车辆视觉检测的 YOLO-MMCE 算法[J]. 油气储运，2024，43（9）：1031-1038.
SUN Huimei, LIU Lu, WANG Degang, et al. YOLO-MMCE algorithm for visual detection of engineering vehicles in high-consequence 
area[J]. Oil & Gas Storage and Transportation, 2024, 43(9): 1031-1038.
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第三方施工对于埋地敷设的油气管道是潜在的安

全隐患，尤其是在人口密集的高后果区，由于建设工程

频繁，经常出现多类大型工程车辆，附近的埋地管道始

终处于工程车辆带来的碾压变形、挖掘受损甚至破裂

等安全威胁之中。通过设置于管廊带附近的监控摄像

机进行远程监控是目前最有效的高后果区管道安防手

段之一，但单纯依靠人力远程观察无法实现对工程车

辆施工情况的准确实时监控，亟需开发一种基于深度

学习的工程车辆视觉目标检测算法。

深度学习是机器学习的一种，通过构建多机器学

习模型和海量的训练数据来学习更有用的特征，从而

最终提升分类或预测的准确性。深度学习目前已经发

展出多种单阶段、两阶段目标检测算法[1]。单阶段算法

始于 YOLO（You Only Look Once）、SSD（Single Shot 

MultiBox Detector）[2]等方法，直接在图像上进行目标

检测和分类，具有较高的检测速度。两阶段算法的代

表是区域卷积神经网络（Region-based Convolutional 

Neural Network, R-CNN）系列[3-4]，通过选择性搜索生

成候选区域，再进行分类和回归，大幅提升了检测精

度，但计算量较大，导致处理速度较慢。在各种算法的

发展过程中，YOLO 系列通过不断改进模型结构和优

化训练策略，有效平衡了精度与速度。

目标检测算法在工程车辆检测实际应用中存在

一定难度，究其原因：一是施工现场环境复杂，众多车

辆协同工作，图像中重叠目标较多；二是野外环境下光

照不断变化，同一目标在图像上呈现的特征也不断变

化，导致经常出现漏检[5-7]。YOLO 算法因其性能突

出被广泛应用，但是其基于锚框的目标检测方式无法

对重叠的目标进行有效的处理和区分[8-11]，同时在光

照随时间变化的情况下其检测精度不能满足工程车

辆检测的实际需要。为解决上述问题，以施工中常见

的挖掘机、装载机、压路机及重型货车为识别对象，选

择在检测精度、检测速度以及灵活性上都表现较好的

YOLOv5 为基础模型，提出一种基于改进 YOLOv5

算法的高后果区工程车辆视觉目标检测方法——

YOLO-MMCE 算法，并通过管道沿线获取的实际图

像数据集，验证该方法在提高精度和减少漏检率方面

的效果。

 
1　YOLOv5模型 

YOLOv5 根据模型深度和宽度分为 YOLOv5s、

YOLOv5m、YOLOv5l 及 YOLOv5x 共 4 个版本[12]，选

择模型深度和宽度最小的 YOLOv5s 模型。YOLOv5s

网络结构分为输入端、骨干网络、颈部网络以及预测

层 4 个部分：①输入端，主要对图像进行数据增强，并

对图像处理策略和锚框生成机制进行优化。②骨干网

络，用于对图像进行特征提取，采用在 Darknet53 基础

上增加跨阶段局部（Cross Stage Paritial, CSP）网络结

构的 CSPDarknet53。③颈部网络，采用特征金字塔网

络（Feature Pyramid Network, FPN）+路径聚合网络

（Path Aggregation Network, PAN）的结构[13]，对骨

干网络中提取的特征信息进行进一步的提取和融合。

④预测层，由 3 个不同尺寸的检测头组成，主要作用是

对网络输出的特征图进行处理，生成目标的预测框和

类别概率信息。

 
2　YOLO-MMCE模型

为应对实际工况中日照变化及多目标重叠导致的

车辆特征的多变性，增强各类车辆特征的可辨识度，提

出的 YOLO-MMCE 模型在数据增强、注意力机制及

损失函数 3 个方面进行了改进（图 1）。

2.1　数据增强模块

原始数据集在进入训练网络前，一般采取数据

增强模块提升目标背景的复杂度，进而提高训练模

the high-consequence areas along the Lanzhou-Zhengzhou-Changsha product oil pipeline. The results revealed precision enhancements in 

engineering vehicle target detection under real-world conditions, resulting from the YOLOv5 algorithm improvements in three aspects. These 

advancements led to an overall Mean Average Precision (mAP) of 84.8%, a 6.9% increase over the original YOLOv5 algorithm. The target 

detection mAPs for excavators, loaders, rollers, and heavy trucks were raised by 4.4%, 7.5%, 9.5%, and 6.0% respectively. [Conclusion]  

The YOLO-MMCE algorithm provides an efficient solution for detecting overlapped targets and engineering vehicle targets in environments 

with varying sunlight conditions, illustrating its values in practical applications. (3 Figures, 5 Tables, 28 References)

Key words: YOLOv5, engineering vehicle, data augmentation, coordinate attention (CA) mechanism, loss function



1033

Inspection & Integrity | 检测与完整性

yqcy.paperonce.org

孙卉梅，等：面向高后果区工程车辆视觉检测的 YOLO-MMCE 算法

型对各种实际工况的适应性。以往研究表明，单独

使用 Mosaic 或 Mixup 方法对精度提高有限[14]，考

虑本数据集中目标重叠和不同光照场景的复杂条

件，为了增加背景信息复杂度和丰富样本数量，提出

Mosaic9+Mixup 数据增强方法。

Mosaic9 是对原始的 Mosaic 方法进行改进，将每

次拼接图片的数量由 4 张增加为 9 张。每次随机选择

9 张数据集中图片，按照网格状排列进行拼接处理生

成新图，能够使新图具有更高的背景复杂度，同时保留

了原有的目标特征。Mixup 数据增强方法基于邻域风

险最小化原则使用线性插值得到新样本数据，从增加

样本数量的角度提升了数据集的复杂性[15]。随机选

择 2 张数据集中图片，将像素值按权重线性相加后生

成新的图像，同时将图像样本标签对应加权求和得到

混合标签。

在输入端按照指定比例，从原始数据集中随机抽取

图片，分别采用上述两种方法进行数据增强处理（图 2，

图中 2、3、4、5 分别代表挖掘机、装载机、压路机及重型

货车），将数据集的照片通过拼接及像素混和生成新的

数据集并输入训练网络。

2.2　注意力机制

注意力机制是模拟人类大脑处理图像的方法，通

过快速扫描全局图像选取高价值区域，对高价值区域

投入更多注意力资源，获取更多有用信息同时抑制其

他区域的无用信息[16]。在原始 YOLOv5 网络结构增

加注意力机制以获取更加有效的特征，抑制不同光照

条件对工程车辆特征的干扰。

图 1　YOLO-MMCE 模型结构图
Fig. 1　Structure block diagram of YOLO-MMCE model

图 2　采取 Mosaic9 和 Mixup 数据增强后效果图
Fig. 2　Effect after Mosaic9 and Mixup data augmentation



1034

检测与完整性 | Inspection & Integrity

yqcy.paperonce.org

2024 年 9 月　第 43 卷 第 9 期

目前常用的注意力机制主要有SE（Squeeze and 

Excitation）[17]、ECA（Efficient Channel Attention）[18]、

CBAM（Convolutional Block Attention Module）[19]及 CA

（Coordinate Attention）[20]。其中 SE 和 ECA 只能对通

道进行加权，忽略了空间信息的关系；CBAM 增加了空

间注意力模块，但过度关注局部细节，计算量较大[21-23]；

CA 既权衡了性能和复杂度之间的关系，又考虑了通道

维度和空间维度上的注意力，通过学习自适应的通道权

重来获取重要的信息，因此可以提取实际工况下各类工

程车辆的核心特征，忽略日照变化对车辆特征的影响

（图 3，其中C 为通道数，H 为图像高度，W 为图像宽

度，r 为缩放因子）。由于 CA 机制可以根据目标的尺

度变化在特征图层级上分配更多的注意力，强化不同

尺度的目标特征，因此将 CA 模块置于 3 个检测头前。

图 3　CA 原理图
Fig. 3　Schematic diagram of CA

2.3　损失函数的改进

YOLOv5 的原始算法中会使用 CIOU（Complete 

Intersection over Union）作为损失函数[24]，计算表达式

如下：

LCIOU＝1－IOU＋ c 2

ρ 2（bA，bB）
＋αv              （1）

IOU＝A∪B
A∩B

                         （2）

v＝
π2

4
arc tanhB

wB

－arc tan hA
wA 2

             （3）

α＝
（1－IOU）＋v

v
                      （4）

式中：LCIOU 为 CIOU 损失；ρ 表示求欧氏距离；c 为预

测框与真实框之间最小外接矩形的对角线长度；α 为

权重参数；v 用于衡量预测框与真实框长度比的一致

性；A 表示预测框；B 表示真实框；IOU 为交并比；b A、

b B 分别为预测框、真实框的中心点；wA、h A 分别为预

测框的宽、高；wB、h B 分别为真实框的宽、高。

从式（2）、式（3）可以看出，CIOU 考虑了边界框

回归的重叠面积、中心点距离及宽高比，但在宽高比的

描述上，CIOU 使用的是相对值，一旦与真实框的宽高

纵横比相同，v 的计算值为 0，权重参数就失去作用，以

致无法继续优化。为解决此问题，选择 EIOU（Efficient 

Intersection over Union）[25-27]代替 CIOU 作为边界框

回归的损失函数。

LEIOU=L IOU+L dis+L asp=1－IOU+
c 2

ρ 2（bA，bB）
+

（cw）
2

ρ 2（wA，wB）
+

（c h）
2

ρ 2（hA，hB）
                               （5）

式中：L IOU 为重叠面积损失；L dis 为中心距离损失；L asp

为宽高损失；cw、c h 分别为最小外接矩形的宽、高。

EIOU 在 CIOU 的基础上将预测框与真实框的纵

横比的影响因子拆分，分别计算预测框、真实框的高和

宽，直接使目标框与锚框宽度和高度的差值最小化，解

决了 CIOU 宽高比是相对值的不足，可以提高预测框

回归精度，定位更准确。

 
3　实验与分析 

3.1　实验环境与实验参数

实验系统硬件包括 Intel(R)Core(TM)i9-10850K 

CPU@3.60GHz 处理器、NVIDIA GeForce RTX 2080 Ti

显卡、16 GB 内存。实验系统软件包括 Windows 10 操作

系统、并行计算平台 CUDA 11.0、开发环境 Python 3.8，

深度学习框架 Pytorch 1.7。设置学习率为 0.01、冲量为

0.937、权重衰减为 0.000 5、批大小为 32，迭代次数为 100。
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3.2　数据集来源

自定义数据集来源于兰郑长成品油管道实际施

工现场，通过管道沿线高后果区架设的监控摄像机拍

照共获取 2 441 张图片，包括挖掘机、装载机、压路机

及重型货车共 4 类，其中 2 027 张作为训练集，414 张

作为验证集。数据集中 1 784 张图片存在目标相互重

叠情况，同时涵盖了不同光照条件下的数据样本。使

用 labelImg 软件对数据集进行目标标注，自动生成

YOLO 格式的 txt 文件。

3.3　评价指标

为评估模型的性能并增强工程车辆分类识别的

准确性，采用精确度、召回率、平均精度均值（Mean 

Average Precision, mAP）作为模型性能的评价指标[28]。

精确度反映的是在检测网络给出的正样本中正确预测

的比重，召回率反映的是被检测出的目标在所有目标

中所占的比重。mAP 分为 mAP0.5 和 mAP(0.5:0.95)，

其中 mAP0.5 指将 IOU 阈值设置为 0.5 时的 mAP；

mAP(0.5:0.95) 指在不同 IOU 阈值（从 0.5 到 0.95，步

长 0.05）上的 mAP。

3.4　对比实验与结果

3.4.1　数据增强对比

在原始 YOLOv5 基础上按照不同比例增加 Mosaic9

和 Mixup，开展了多次对比实验（表 1）。实验结果表

明，对于该数据集单独使用 Mosaic9 或 Mixup 方法进

行数据增强对精度提高的效果有限，分别为 78.4％、

70.4％；70％数据采用 Mosaic9 方法，30％数据采用

Mixup 方法，mAP0.5 达到 82.1％，较原始 YOLOv5 算

法提高了 4.2％。

3.4.2　不同注意力对比

在原始 YOLOv5 算法基础上分别增加 SE、

ECA、CBAM 及 CA 共 4 种注意力机制，对最终目标

检测结果进行对比实验（表 2）。实验结果表明，CA

注意力机制考虑了通道信息和方向相关的位置信

息，对识别精度的提升最有帮助，最终 mAP0.5 达到

80.5％，比原始 YOLOv5 算法提高了 2.6％。

3.4.3　不同损失函数对比

为了验证采用的 EIOU 的有效性，在相同条件下

设置了与几组常见的损失函数的对比实验（表 3）。实

验结果表明，EIOU 解决了 CIOU 宽高比是相对值的

不足，可以提高预测框回归精度，最终 mAP0.5 达到

78.9％，比原始 YOLOv5 算法提高了 1.0％。

3.4.4　实验结果

将数据增强、注意力机制、损失函数 3 个方面的

改进应用于 YOLOv5 训练模型，对 4 类工程车辆进

行目标检测（表 4）。从对比实验结果可以看出每种

类别的 mAP 和召回率都得到了不同程度的提升，

精确度没有明显下降，有效解决了目标重叠和日照

表 1　数据增强实验对比表
Table 1　Experimental comparison of data augmentation

Mosaic9 比例 Mixup 比例 mAP0.5 mAP(0.5:0.95)
100％ 0 78.4％ 52.1％
90％ 10％ 80.7％ 54.0％
80％ 20％ 79.0％ 53.0％
70％ 30％ 82.1％ 54.6％
60％ 40％ 80.3％ 54.6％
50％ 50％ 79.6％ 55.1％
40％ 60％ 81.1％ 53.6％
30％ 70％ 80.1％ 51.1％
20％ 80％ 80.6％ 51.9％
10％ 90％ 77.7％ 49.6％

          0 100％ 70.4％ 45.1％

表 2　不同注意力机制对比实验表
Table 2　Experimental comparison of different attention mechanism

注意力机制 无（YOLOv5） SE ECA CBAM CA

mAP0.5 77.9％ 78.7％ 79.9％ 78.9％ 80.5％

mAP(0.5:0.95) 51.5％ 51.9％ 52.6％ 52.7％ 54.1％

孙卉梅，等：面向高后果区工程车辆视觉检测的 YOLO-MMCE 算法

表 3　不同损失函数对比实验表
Table 3　Experimental comparison of different loss function

方法 CIOU EIOU

mAP0.5 77.9％ 78.9％

mAP(0.5:0.95) 51.5％ 52.8％

表 4　YOLOv5 模型改进前后对 4 类工程车辆进行目标检测实验结果对比表
Table 4　Comparison with experimental results for 4 types of construction vehicles before and after YOLOv5 Model Improvement

工程车辆
类别

精确度 召回率 mAP0.5 mAP(0.5:0.95)
YOLOv5 YOLO-MMCE YOLOv5 YOLO-MMCE YOLOv5 YOLO-MMCE YOLOv5 YOLO-MMCE

挖掘机 88.7％ 87.7％ 75.0％ 84.6％ 85.9％ 90.3％ 51.5％ 52.6％

装载机 92.6％ 90.2％ 65.5％ 74.7％ 78.3％ 85.8％ 48.8％ 56.7％

压路机 96.4％ 96.1％ 58.6％ 60.3％ 64.7％ 74.2％ 51.6％ 55.2％

重型货车 89.9％ 88.2％ 70.6％ 81.6％ 82.9％ 88.9％ 54.0％ 57.2％
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变化导致的漏检问题。其中目标重叠情况最严重的

重型货车、挖掘机的召回率分别提升了 11％、9.6％；

日照变化最丰富的压路机的 mAP0.5 提高了 9.5％，

召回率提高了 1.7％，精确度下降了 0.3％。YOLO-

MMCE 算法相比于原始 YOLOv5 算法总体 mAP0.5

提高了 6.9％。

3.4.5　不同算法的对比

为了进一步验证所提出方法的优越性 , 将YOLO-

MMCE 算法与 SSD、YOLOv3-tiny 及 YOLOv5 在相

同实验环境下进行对比实验（表 5）可知，与其他 3 种

算法相比，YOLO-MMCE 模型在精确度上略微减少

但整体检测效果更好，相比 SSD、YOLOv3-tiny，在召

回率上提高 11.4％、8.9％，在 mAP0.5 上领先 7.7％、

10.7％，相比 YOLOv5 模型，在权重模型大小只增

加 0.1 MB 的情况下实现了 mAP0.5 提升 6.9％。用

每秒帧率（Frames Per Second, FPS）衡量检测速度，较

YOLOv5 模型有所降低，但是仍然满足实时检测的要求。

4　结论 

针对目前在工程车辆重叠目标检测和日照变化场

景下进行目标检测时出现漏检率高、检测精度低的问

题，以挖掘机、装载机、压路机及重型货车 4 类常见工

程车辆作为检测对象，提出了一种基于改进 YOLOv5

的工程车辆目标检测方法。实验证明，提出的 YOLO-

MMCE 算法相较原始 YOLOv5 算法，在精确度基本

不变的情况下召回率提高了 7.9％，mAP0.5 提高了

6.9％，在目标检测精度和解决漏检方面得到有效提

升。该算法在检测速度上相比其他算法有少许降低，

因此下一步研究重点是提升算法的目标检测速度，并

根据实际应用效果进行迭代优化。

参考文献：

[1] GIRSHICK R, DONAHUE J, DARRELL T, MALIK J. Rich 

feature hierarchies for accurate object detection and semantic 

segmentation[C]. Columbus: 2014 IEEE Conference on Computer 

Vision and Pattern Recognition, 2014: 580-587.

[2] WEI L，DRAGOMIR A，DUMITRU E，CHRISTIAN S，

SCOTT R，CHENG-YANG F，et al. SSD: Single Shot MultiBox 

Detector[J].Springer, Cham, 2016: 21-37. DOI:10.1007/978-3-

319-46448-0_2.

[3] GIRSHICK R. Fast R -CNN[C]. Santiago: 2015 IEEE 

International Conference on Computer Vision (ICCV), 2015: 

1440-1448.

[4] REN S Q, HE K M, GIRSHICK R, SUN J. Faster R-CNN: 

towards real-time object detection with region proposal 

networks[J]. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/

TPAMI.2016.2577031.

[5] 刘德祥，梁苗，王钰棋. 改进 Faster-RCNN 的工程车辆识别方

法[J]. 城市勘测，2023（1）：110-113. DOI：10.3969/j.issn.1672-8262. 

2023.01.029.

LIU D X, LIANG M, WANG Y Q. Improved Faster-RCNN 

method for engineering vehicle detection[J]. Urban Geotechnical 

Investigation & Surveying, 2023(1): 110-113.

[6] 周斌，苏鹏，高鹏. 基于改进 YOLOv3 算法的挖掘机检测方

法[J]. 数字制造科学，2022，20（2）：141-145. DOI：10.3963/

j.issn.1672-3236.2022.02.012.

ZHOU B, SU P, GAO P. Excavator detection method based on 

improved algorithm of YOLOv3[J]. Digital Manufacture Science, 

2022, 20(2): 141-145.

[7] 张旭天. 基于深度学习的工程车辆检测与追踪[D]. 石家庄：石

家庄铁道大学，2021. 

ZHANG X T. Construction vehicle detection and tracking 

based on deep learning[D]. Shijiazhuang: Shijiazhuang Tiedao 

University, 2021.

[8] REDMON J, DIVVALA S, GIRSHICK R, FARHADI A. 

You only look once: unified, real-time object detection[C]. Las 

Vegas: 2016 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 2016: 779-788.

[9] 刘先禄. 基于深度卷积神经网络的小目标检测[D]. 淮南：安徽

理工大学，2022. 

LIU X L. Small object detection based on deep convolutional 

neural networks[D]. Huainan: Anhui University of Science and 

Technology, 2022.

表 5　不同算法在数据集上的性能对比表
Table 5　Comparison of dataset performance among algorithms

方法 精确度 召回率 mAP0.5 FPS 权重模型大小/
MB

SSD 91.4％ 63.9％ 77.1％ 74.8 93.1

YOLOv3-tiny 84.2％ 66.4％ 74.1％ 121.9 16.9

YOLOv5 91.9％ 67.4％ 77.9％ 78.7 13.7

YOLO-MMCE 90.5％ 75.3％ 84.8％ 65.4 13.8



1037

Inspection & Integrity | 检测与完整性

yqcy.paperonce.org

[10] 刘传洋，吴一全. 基于深度学习的输电线路视觉检测方法研究

进展[J]. 中国电机工程学报，2023，43（19）：7423-7445. DOI：

10.13334/j.0258-8013.pcsee.221139.

LIU C Y, WU Y Q. Research progress of vision detection 

methods based on deep learning for transmission lines[J]. 

Proceedings of the CSEE, 2023, 43(19): 7423-7445.

[11] 陈业红，姜国龙，褚云飞，张慧仪，张璐，吴朝军. 基于锚框的

深度学习物体目标检测算法概览[J]. 微电子学与计算机，

2021，39（7）：12-23. DOI：10.19304/J.ISSN1000-7180.2021. 

1340.

CHEN Y H, JIANG G L, CHU Y F, ZHANG H Y, ZHANG 

L, WU C J. An overview of object detection algorithms of deep 

learning rely on anchor box[J]. Microelectronics & Computers, 

2021, 39(7): 12-23.

[12] 何幸，黄永明，朱勇. 基于改进 YOLOv5 的路面坑洼检测方                                       

法[J/OL]. 电子科技：1-8[2024-07-15]. https://doi.org/10.16180/j.   

cnki.issn1007-7820.2024.07.007. DOI：10.16180/j.cnki.issn1007-7820.                              

2024.07.007.

HE X, HUANG Y M, ZHU Y. Pavement pothole detection 

method based on improved YOLOv5[J/OL]. Electronic Science 

and Technology: 1-8[2024-07-15]. https://doi.org/10.16180/

j.cnki.issn1007-7820.2024.07.007.

[13] 邵延华，张铎，楚红雨，张晓强，饶云波. 基于深度学习的

YOLO 目标检测综述[J]. 电子与信息学报，2022，44（10）：

3697-3708. DOI：10.11999/JEIT210790.

SHAO Y H, ZHANG D, CHU H Y, ZHANG X Q, RAO Y B. 

A review of YOLO object detection based on deep learning[J]. 

Journal of Electronics & Information Technology, 2022, 44(10): 

3697-3708.

[14] ZHANG H Y, CISSE M, DAUPHIN Y N, LOPEZ-PAZ D. 

Mixup: beyond empirical risk minimization[EB/OL]. (2018-04-27)

[2024-07-15]. https://arxiv.org/abs/1710.09412.

[15] 王宇博，马廷淮，陈光明. 基于改进 YOLOv5 算法的农田杂

草检测[J]. 中国农机化学报，2023，44（4）：167-173. DOI：

10.13733/j.jcam.issn.2095-5553.2023.04.023.

WANG Y B, MA T H, CHEN G M. Weeds detection in 

farmland based on a modified YOLOv5 algorithm[J]. 

Journal of Chinese Agricultural Mechanization, 2023, 44(4): 

167-173.

[16] 张立艺，武文红，牛恒茂，石宝，段凯博，苏晨阳. 深度学习中的

安全帽检测算法应用研究综述[J]. 计算机工程与应用，2022，

58（16）：1-17. DOI：10.3778/j.issn.1002-8331.2203-0580.

ZHANG L Y, WU W H, NIU H M, SHI B, DUAN K B, SU 

C Y. Summary of application research on helmet detection 

algorithm based on deep learning[J]. Computer Engineering and 

Applications, 2022, 58(16): 1-17.

[17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. 

Salt Lake City: 2018 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition, 2018: 7132-7141.

[18] WANG Q L, WU B G, ZHU P F, LI P H, ZUO W M, HU Q 

H. ECA-Net: efficient channel attention for deep convolutional 

neural networks[C]. Seattle: 2020 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (CVPR), 2020: 

11531-11539.

[19] WOO S ,  PARK J ,  LEE J  Y,  KWEON I  S .  CBAM: 

convolutional block attention module[C]. Munich: Computer 

Vision–ECCV 2018, 2018: 3-19.

[20] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for 

efficient mobile network design[C]. Nashville: 2021 IEEE/

CVF Conference on Computer Vision and Pattern Recognition 

(CVPR), 2021: 13708-13717.

[21] 张宸嘉，朱磊，俞璐. 卷积神经网络中的注意力机制综述[J].

计算机工程与应用，2021，57（20）：64-72. DOI：10.3778/

j.issn.1002-8331.2105-0135.

ZHANG C J, ZHU L, YU L. Review of attention mechanism in 

convolutional neural networks[J]. Computer Engineering and 

Applications, 2021, 57(20): 64-72.

[22] HUANG C, YANG S Y, LUO Y G, WANG Y S, LIU Z. 

Visual detection and image processing of parking space based on 

deep learning[J]. Sensors, 2022, 22(17): 6672. DOI: 10.3390/

s22176672.

[23] MENG L L, CUI X, LIU R, ZHENG Z, SHAO H L, LIU 

J X, et al. Research on metallurgical saw blade surface defect 

detection algorithm based on SC-YOLOv5[J]. Processes, 2023, 

11(9): 2564. DOI: 10.3390/pr11092564.

[24] REZATOFIGHI H, TSOI N, GWAK J Y, SADEGHIAN A, 

REID I, SAVARESE S. Generalized intersection over union: a 

metric and a loss for bounding box regression[C]. Long Beach: 

2019 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), 2019: 658-666.

[25] ZHENG Z H, WANG P, LIU W, LI J Z, YE R G, REN 

D W. Distance-IoU loss: faster and better learning for 

孙卉梅，等：面向高后果区工程车辆视觉检测的 YOLO-MMCE 算法



1038

检测与完整性 | Inspection & Integrity

yqcy.paperonce.org

2024 年 9 月　第 43 卷 第 9 期

基金项目：国家自然科学基金资助项目“基于泛信息融合的智能

制造系统状态感知与虚拟维护”，51975402。

作者简介：孙卉梅，女，2000 年生，在读硕士生，2022 年毕业于

山东工商学院电子信息工程专业，现主要从事机器视觉方向的研

究工作。地址：天津市河西区大沽南路 1310 号，300222。电话：

17616239629。Email：17616239629@163.com

通信作者：刘路，男，1982 年生，高级工程师，2011 年博士毕业于

天津大学精密仪器及机械专业，现主要从事机器视觉与数字信号处

理方向的研究工作。地址：天津市河西区大沽南路 1310 号，300222。

电话：13722655164。Email：lordman1982@163.com

bounding box regression[J]. Proceedings of the AAAI 

Conference on Artificial Intelligence, 2020, 34(7): 12993-

13000. DOI: 10.1609/aaai.v34i07.6999.

[26] 周秦汉，王振. 基于多尺度特征增强卷积神经网络遥感目标检

测算法[J]. 电光与控制，2022，29（11）：74-81. DOI：10.3969/

j.issn.1671-637X.2022.11.013.

ZHOU Q H, WANG Z. A remote sensing target detection 

algorithm based on multi-scale feature enhancement CNNs[J]. 

Electronics Optics & Control, 2022, 29(11): 74-81.

[27] ZHANG Y F, REN W Q, ZHANG Z, JIA Z, WANG L, TAN 

T N. Focal and efficient IOU loss for accurate bounding box 

regression[J]. Neurocomputing, 2022, 506: 146-157. DOI: 

10.1016/j.neucom.2022.07.042.

[28] 王素珍，吕基岳，邓成禹，葛润东，李浩儒. 基于改进 YOLOv5

的钢铁表面缺陷检测算法[J]. 国外电子测量技术，2023，

42（10）：43-50. DOI：10.19652/j.cnki.femt.2305102.

WANG S Z, LV J Y, DENG C Y, GE R D, LI H R. Improved 

YOLOv5-based surface defect detection algorithm for steel[J].

· Received: 2023-11-02

· Revised: 2023-11-28

· Online: 2024-06-26

Electronic Measurement Technology, 2023, 42(10):43-50.

（编辑：曾力波）

基金项目：中国航空油料集团有限公司科技项目“机坪加油泵系

统配置及控制模式优化研究”，121302。

作者简介：沈青，男，1982 年生，高级工程师，2004 年毕业于中国

石油大学（北京）油气储运工程专业，现主要从事民航供油工程咨询、

设计方面的研究工作。地址：北京市朝阳区北苑路 32 号安全大厦，

100012。电话：13651291563。Email：shenqing@cnaf.com

[18] 陈远富. 首都机场供油自动化系统技术开发研究与工程实现[D].

北京：北京航空航天大学，1999.

CHEN Y F. Technical development research and engineering 

realization for the capital airport supply oil automation 

system[D]. Beijing: Beihang University, 1999.

[19] 刘鹏，宫敬，李晓平，王延庆，沈青，李旭光. 机场加油系统水力

瞬变分析[J]. 中国石油大学学报（自然科学版），2023，47（3）：

157-163. DOI：10.3969/j.issn.1673-5005.2023.03.018.

LIU P, GONG J, LI X P, WANG Y Q, SHEN Q, LI X G. 

Hydraulic transient analysis of airport refueling system[J]. 

Journal of China University of Petroleum (Edition of Natural 

Science), 2023, 47(3): 157-163.

[20] LIU P, GONG J, SHI B H, SONG S F, SHEN Q. Hybrid 

method for hydraulic transient analysis of liquid pipe networks 

based on characteristic lines and equivalent circuits[J]. 

Geoenergy Science and Engineering, 2024, 239: 212968. DOI: 

10.1016/j.geoen.2024.212968.

（编辑：张雪琴）

· Received: 2023-09-30

· Revised: 2023-10-20

· Online: 2024-07-05

（上接第 1001 页）


