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Abstract: [Objective] Accurate corrosion rate prediction of oil and gas pipelines is critical to ensure the operational safety of oil and gas storage
and transportation systems. However, most of the existing prediction models are based on the BP neural network, which has drawbacks such as
slow convergence rates and a tendency to fall into local optima. [Methods] This paper proposes a pipeline corrosion rate prediction model using
an optimized BP neural network based on an improved Sparrow Search Algorithm to address the aforementioned disadvantages. The improvement
process involved initializing the population through a reverse learning strategy. Additionally, a hybrid sine-cosine algorithm was introduced to
update the location of discoverers, and a Levy flight strategy was incorporated to update the location of followers within the Sparrow Search
Algorithm. Based on the enhanced Sparrow Search Algorithm, the weights and thresholds of the BP neural network were optimized, leading to a
more scientifically selected set of parameters. [Results] Incorporating sample data of uniform corrosion rates and pitting corrosion rates from 100
rounds of 20 steel tests, pipeline corrosion rate prediction models were established respectively utilizing BP, SSA-BP, and MIS-SSA-BP neural
networks. These models were applied to train, predict, and compare uniform corrosion rates and pitting corrosion rates of oil and gas pipelines.
The MIS-SSA-BP neural network prediction model exhibited very low mean absolute error, mean square error, root mean square error, and mean
absolute percentage error. Its relative errors between the predicted and measured values of both uniform corrosion rates and pitting corrosion rates
were all below 5%. Furthermore, this model showcased superior evaluation indexes and prediction accuracy compared to the BP and SSA-BP

neural network prediction models. [Conclusion] After additional study efforts, the strong prediction performance of the pipeline corrosion rate
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prediction model based on the MIS-SSA-BP neural network has been further verified. The research findings offer new approaches and insights for

future investigations into the prediction of corrosion rates in oil and gas pipelines. (2 Figures, 8 Tables, 30 References)

Key words: pipeline corrosion rate, prediction, MIS-SSA-BP neural network, algorithm optimization
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Table 1 Test conditions for pipeline corrosion

JREWSE/ (mg- L™

S /MPa Wi/ (m-s pH RIS ET ] /h

Ca"" +Mg"" SO, HCO'™ Na®+K* Br~
2 0.5 6.2 336 800 600 288.62 63 699.82 160
*2 PUAEERMTIERHEERS R HEER &)
Table 2 Characteristic indexes in influencing factors and corrosion rates from field pipeline corrosion tests (partial)
L i s iaed [ ik S g AL

CO, HS  (mg-L™H (mm-a H T CO; HS  (mg LD (mm-a H A
1 0.010 0.00300 10 000 40 0.0852 0.078 2 89 0.255  0.050 00 5000 50 0.1950 0.307 6
2 0.500 0.003 00 10 000 40 0.146 9 0.250 3 90 0.255 0.000 30 100 000 50 0.193 4 0.307 6
3 0.050 0.003 00 10 000 40 0.1259 0.0912 91 0.255 0.050 00 100 000 50 0.2852 0.359 8
4 0.050 0.05000 10 000 40 0.366 7 0.169 4 92 0.010 0.02515 5000 50 0.142 6 0.198 1
5 0.050 0.003 00 10 000 20 0.064 7 0.052'1 93 0.500 0.02515 5000 50 0.287 2 0.409 3
6 0.050 0.003 00 10 000 80 0.2078 0.1929 94 0.010 0.02515 100 000 50 0.195 6 0.2815
7 0.050 0.000 30 10 000 40 0.0759 0.052'1 95 0.500 0.02515 100 000 50 0.299 0 0.490 1
8 0.050 0.00300 100 000 40 0.1423 0.234 6 96 0.255  0.000 30 52 500 20 0.097 9 0.093 8
97 0.255  0.050 00 52500 20 0.1811 0.177 2
86 0.010 0.025 15 52 500 80 0.2632 0.320 6 98 0.255  0.000 30 52 500 80 0.252 1 0.328 5
87 0.500 0.025 15 52 500 80 04921 0.547 5 99  0.255  0.050 00 52 500 80 0.3210 0.4119
88 0.255 0.000 30 5000 50 0.1225 0.2738 11100 0.255 0.02515 52500 50 0.162 7 0.247 6

32 BRESHRE
W BP #1248 4 25 158 (R )I 2R IR B 1000 IR, 2
RN 0.01, YLk B bR /MR Z N 0.000 001 mm/a,
SRR TN 0.01, He/MERERS N 107" mm’/a’, i\
ST SO 4, BT SO 1, BRSBTS 9.
Xof B S [ R £ R <) MIS-SSA-BP A5 78 35 00 5 e 35k
RIGAT R ZE (R 3.3 O a5, MFEARKEM G 20%

®3 TEMKERT MIS-SSA-BP 1R EL 1) 5] i iR R T
FAFHRER L3R
Table3 Comparison of relative errors in uniform corrosion rate
prediction by MIS-SSA-BP model across different test set sizes

— e
W YN, e
10% 34.28% 3.47% 12.49%
20% 4.67% 0 1.30%
30% 21.22% 0 2.20%
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Table 4 Comparison of relative errors in pitting corrosion rate
prediction by MIS-SSA-BP model across different test set sizes

. AR iR 22
WAL R T - -
KRE /ME FHME
10% 17.38% 0.35% 6.28%
20% 1.32% 0 0.54%
30% 29.99% 0.03% 3.25%
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PR R ARSI B . Dt — B VPN (1 TR0 R,
43 T SRS AR T 35 50 8 il ZR ) MAES MSE.
RMSE. MAPE (3 6), 1] I, MIS-SSA-BP #2841 MAE.
MSE. MAPE ¥ & 3 /T HAB A, H RMSE H#g& K
T SSA-BP 5 28Y, (H A b T AR AK . AR F, MIS-
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Table 5 Error statistics for uniform corrosion rate prediction across different models
BB ME SR/ (mm-a D #AixHiR 2/ (mm-a ) AR 1R 2

E52 e @ < QQ < QQ G <

1 02222 0.1878 0.207 3 0.230 4 0.0344 0.0149 0.008 2 15.4815% 6.7057%  3.690 4%

2 02801 0.2648 0.2819 0.2715 0.0153 0.0018 0.008 6 5.4623% 0.6426%  3.070 3%

303209 0.3319 0.3114 0.3317 —0.0110  0.009 5 0.010 8 3.4279% 2.9604%  3.3655%

4 01921 0.1026 0.163 0 0.1918 0.0895 0.0291 0.000 3 46.590 3% 15.1484%  0.156 2%

5 02012 02017 0.203 8 0.2015 0.0005  0.002 6 0.000 3 0.2485% 1.2922%  0.149 1%

6 02632 02514 0.363 6 0.263 3 0.0118 0.1004 0.000 1 4.4833% 38.1459%  0.038 0%

7 04921 03432 0.4714 0.469 1 0.1489  0.0207 0.023 0 30.258 1% 4.206 5%  4.673 8%

8 01225 0.1231 0.104 5 0.122 4 0.0006  0.0180 0.000 1 0.489 8% 14.6939%  0.0816%

9 01950 0.2568 0.2427 0.1955 0.0618 0.0477 0.000 5 31.692 3% 24.4615%  0.256 4%
10 0.1934  0.196 1 0.167 4 0.193 7 0.0027  0.026 0 0.000 3 1.396 1% 13.4436%  0.155 1%
11 02852 0.3249 0.254 9 0.297 2 0.0397 0.0303 0.0120 13.920 1% 10.624 1%  4.207 6%
12 0.1426  0.1391 0.148 3 0.142 5 0.0035  0.0057 0.000 1 2454 4% 3.9972%  0.070 1%
13 02872 0.2405 0.257 3 0.287 2 0.046 7 0.0299 0 16.2604% 10.4109% 0
14 01956 0.2129 0.208 9 0.188 6 0.0173 0.0133 0.007 0 8.8446% 6.7996%  3.5787%
15 02990 0.3105 0.300 9 0.299 5 0.0115 0.0019 0.000 5 3.8462% 0.6355%  0.167 2%
16 0.0979 0.0877 0.090 5 0.099 0 0.0102  0.007 4 0.001 1 10.418 8% 7.558 7%  1.1236%
17 01811 0.2184 0.192 3 0.182 7 0.0373 0.0112 0.001 6 20.596 4% 6.1844%  0.8835%
18 0.2521 0.2350 0.264 5 0.252 0 0.0171 0.0124 0.000 1 6.7830% 4.9187%  0.039 7%
19 03210 0.3561 0.3153 0.320 6 0.0351 0.0057 0.000 4 10934 6% 1.7757%  0.124 6%
20 0.1627 0.2267 0.2376 0.163 1 0.0640 0.074 9 0.000 4 39.336 2% 46.0356%  0.2459%

* 6 TEEETN S EhERITN IR R 332 EAkikE

Table 6 Comparison of evaluation indexes for uniform
corrosion rate prediction across different models

B <ml\r4n/f*/1> miﬁﬁi/*z) <r§rlfig/l> MAPE

BP 0.032 9500 0.002 35110 0.048488 13.65%
SSA-BP 0.018 178 0 0.000 644 00  0.025 377 9.14%
MIS-SSA-BP 0.006 5224 0.000759 76 0.027 564  1.45%

BEF 25 b SRR A KL, X E AT 3 S T AR A
I Gt W R 25 GE 7), A7 A% 421 BP B8, SSA-
BP B8, MIS-SSA-BP A5 284 [ 7 A 55 4y 1, 266 %5
R ZE R R ZE BN, T A5 R R E R T L S BP
PR 15 SSA-BP R StiF bb %5 70 0000 i ek 3ok S5 B )
MAE. MSE. RMSE. MAPE (% 8), #] i, MIS-SSA-
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Table 7 Error statistics for pitting corrosion rate prediction across different models

MR/ (mm-a D #07E (mmea ) X R
5 SEE BP A SSA-BP #  MIS-SSA-BP BP Hi SSA-BP  MIS-SSA-BP BP K SSA-BP  MIS-SSA-BP
' WA MBENE BRHIIME i ! iy i Fi 7y F

1 01486 0.1844 0.160 5 0.149 8 0.0358 0.0119 0.0012 24.0915% 8.0081%  0.807 5%

2 03206 0.3918 0.276 3 0.320 6 0.0712  0.044 3 0 22.2084% 13.8178% 0

3 04693 04650 0.4880 0.4755 0.0043 0.0187 0.006 2 0.9163% 3.9847%  1.3211%

4 00913 0.0488 0.099 1 0.090 1 0.0425 0.007 8 0.0012 46.549 8% 8.5433%  1.314 3%

5 02086  0.2544 0.233 8 0.2099 0.0458  0.025 2 0.0013 21.9559% 12.0805%  0.6232%

6 03206 03271 0.3516 0.3237 0.0065 0.0310 0.003 1 2.0274% 9.6694%  0.966 9%

7 05475 05237 0.519 5 0.547 6 0.0238  0.0280 0.000 1 4.3470% 5.1142%  0.018 3%

§ 02738 02083 0.236 1 0.272 1 0.0655 0.0377 0.0017 23.9226% 13.7692%  0.620 9%

9 03076 0.2966 0.293 6 0.307 3 0.0110 0.0140 0.000 3 3.576 1% 4.5514%  0.097 5%
10 0.3076  0.2876 0.308 5 0.308 4 0.0200  0.000 9 0.000 8 6.5020% 0.2926%  0.260 1%
11 0.3598 0.376 8 0.365 4 0.359 3 0.0170  0.005 6 0.000 5 4.724 8% 1.556 4%  0.139 0%
12 01981 0.144 9 0.162 8 0.196 2 0.0532  0.0353 0.0019 26.855 1% 17.8193%  0.959 1%
13 04093  0.3617 0.409 5 0.407 2 0.0476  0.000 2 0.002 1 11.629 6% 0.0489%  0.513 1%
14 02815 0.2222 0.296 0 0.2852 0.0593 0.0145 0.003 7 21.0657% 5.1510%  1.3144%
15 04901 04401 0.502 7 0.489 2 0.0500 0.0126 0.000 9 10.202 0% 2.5709%  0.1836%
16 0.0938  0.1050 0.097 6 0.094 1 0.0112  0.003 8 0.000 3 11.9403% 4.0512%  0.3198%
17 01772  0.189 2 0.177 6 0.1777 0.0120  0.000 4 0.000 5 6.7720% 0.2257%  0.2822%
18 03285 0.3879 0.318 9 0.3306 0.0594  0.009 6 0.002 1 18.082 2% 2.9224%  0.639 3%
19 04119 04697 0.436 2 0.4130 0.0578  0.024 3 0.0011 14.0325% 5.8995%  0.267 1%
20 0.2476  0.2920 0.241 3 0.248 1 0.0444  0.006 3 0.000 5 17.932 1% 2544 4%  0.2019%

*8 TRIEESMERTAITNIEIRT LR
Table 8 Comparison of evaluation indexes for pitting
corrosion rate prediction across different models

B e (mmaly MAPE

BP 0.036 914 0 0.001 810 10 0.042546 0  14.97%
SSA-BP 0.016 6120 0.000 444 82 0.021 0910 6.13%
MIS-SSA-BP 0.001 466 8 0.000 004 22 0.002 055 1 0.54%

BP #ERY [RRS e e, 4 TR 2 0 MR bR S E B & 2
fit T BP B SSA-BP #5754, [A i MIS-SSA-BP #i 74
RE B 0T I FH VR =078 T Ji i % 1) T

BEXT %R 48 BP i 28 0 25 171 (IS SIGHE BE18 L fe it
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