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改进麻雀搜索算法优化 BP 神经网络管道腐蚀速率预测模型

肖述辉1　杜传甲2　王成军2

1. 陕西延长石油（集团）管道运输公司；2. 西安建筑科技大学管理学院

摘要：【目的】为保障油气储运系统安全运行，需准确预测油气管道腐蚀速率。现有预测模型多基于 BP 神经网

络建立，存在收敛速度慢、易陷入局部最优等缺点。【方法】为解决上述问题，提出一种基于改进麻雀搜索算法

（Sparrow Search Algorithm, SSA）优化 BP 神经网络的管道腐蚀速率预测模型，通过反向学习策略初始化种群，

引入混合正余弦算法更新发现者位置，加入 Levy飞行策略更新追随者位置对麻雀搜索算法进行改进。基于改进

后的麻雀搜索算法对 BP 神经网络的权重与阈值进行寻优，从而提高参数选择的科学性。【结果】以 100 组 20 钢

材料试验获取的均匀腐蚀速率与点蚀速率的样本数据为例，综合多种改进策略 (Multiple Improvement Strategies, 
MIS)，分别建立 BP、SSA-BP、MIS-SSA-BP 神经网络管道腐蚀速率预测模型，对油气管道均匀腐蚀速率与点蚀

速率进行训练、预测及模型对比。MIS-SSA-BP 神经网络管道腐蚀速率预测模型的平均绝对误差、均方误差、均

方根误差、平均绝对百分比误差均处于极低水平，且均匀腐蚀速率、点蚀速率预测值与实测值的相对误差均低于

5％，其各项评价指标与预测精度均显著优于 BP、SSA-BP 神经网络管道腐蚀速率预测模型。【结论】MIS-SSA-

BP 神经网络管道腐蚀速率预测模型具有良好的预测性能，为后续油气管道腐蚀速率预测研究提供了新方法与思

路。（图 2，表 8，参 30）
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Abstract: [[ObjectiveObjective]] Accurate corrosion rate prediction of oil and gas pipelines is critical to ensure the operational safety of oil and gas storage 

and transportation systems. However, most of the existing prediction models are based on the BP neural network, which has drawbacks such as 

slow convergence rates and a tendency to fall into local optima. [[MethodMethodss]] This paper proposes a pipeline corrosion rate prediction model using 

an optimized BP neural network based on an improved Sparrow Search Algorithm to address the aforementioned disadvantages. The improvement 

process involved initializing the population through a reverse learning strategy. Additionally, a hybrid sine-cosine algorithm was introduced to 

update the location of discoverers, and a Levy flight strategy was incorporated to update the location of followers within the Sparrow Search 

Algorithm. Based on the enhanced Sparrow Search Algorithm, the weights and thresholds of the BP neural network were optimized, leading to a 

more scientifically selected set of parameters. [[ResultsResults]] Incorporating sample data of uniform corrosion rates and pitting corrosion rates from 100 

rounds of 20 steel tests, pipeline corrosion rate prediction models were established respectively utilizing BP, SSA-BP, and MIS-SSA-BP neural 

networks. These models were applied to train, predict, and compare uniform corrosion rates and pitting corrosion rates of oil and gas pipelines. 

The MIS-SSA-BP neural network prediction model exhibited very low mean absolute error, mean square error, root mean square error, and mean 

absolute percentage error. Its relative errors between the predicted and measured values of both uniform corrosion rates and pitting corrosion rates 

were all below 5%. Furthermore, this model showcased superior evaluation indexes and prediction accuracy compared to the BP and SSA-BP 

neural network prediction models. [[ConclusionConclusion]] After additional study efforts, the strong prediction performance of the pipeline corrosion rate 

引文：肖述辉，杜传甲，王成军. 改进麻雀搜索算法优化 BP 神经网络管道腐蚀速率预测模型[J]. 油气储运，2024，43（7）：760-768，795.
XIAO Shuhui, DU Chuanjia, WANG Chengjun. Pipeline corrosion rate prediction model using BP neural network based on improved 
sparrow search algorithm[J]. Oil & Gas Storage and Transportation, 2024, 43(7): 760-768, 795.
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管道输送具有成本低、输量大等优势，已成为油

气输送中最主要的运输方式之一，但管道腐蚀所导致

的泄漏很可能会引发失效事故，造成严重后果。如 EI 

Paso 公司天然气管道腐蚀泄漏后引发火灾造成 12 名

露营者死亡[1]；东黄输油管道腐蚀泄漏引发爆炸造成

62 人死亡[2]。2021 年，《安全生产法》（修正案）进一步

强调对管道腐蚀泄漏失效“零容忍”。然而，输送介质

受沿程温变、压变以及受矿物质的影响，管道内不可避

免会形成腐蚀产物[3]。快速、准确地预测管道腐蚀速

率有助于相关企业实现对管道腐蚀失效的事前预防，

最大程度避免或降低管道腐蚀泄漏造成的经济、环境、

社会损失，对于维护管道周边环境、减少腐蚀泄漏影响

有极大的现实价值。

以往关于管道腐蚀速率预测的研究主要分为 3类：

①用于分析主要因素的理论解析公式模型；②基于

数理统计的回归模型；③基于数据挖掘的数值计算

模型[4]。理论解析公式模型主要是基于单一影响因素

进行权重分析而建立的表达式，包括经验模型、机理模

型、半经验-半机理模型，通常仅在特定工况下适用，难

以普遍推广。回归模型通过数理统计方法分析因素之

间的关联，主要有线性回归法、正交试验法、响应面法

等，但其应用往往受限于原始数据的质量与选用统计

方法的适应性。管道环境与腐蚀行为之间存在大量非

线性的复杂关系，专业算法能够有效从庞大复杂的数

据中寻找关系，现有研究大量基于数据挖掘的数值计

算模型预测管道腐蚀速率，主要从灰色关联法[5]、模糊

数学理论[6]、人工神经网络[7]等维度展开分析。其中

灰色模型以 GM（1，1）或 GM（1，N）为基础，能够较

为准确地预测短期结果[8]，但中长期预测结果不够准

确。模糊数学理论大多用于安全等级划分[9]与腐蚀风

险指标建立[6]，难以准确预测腐蚀速率。人工神经网

络具有全面、准确的优势，逐渐成为最常用的管道腐蚀

速率预测方法之一，特别是 BP 神经网络，其具有强大

的非线性映射能力，能够综合预测各种服役条件下的

管道腐蚀情况[10-11]。胡松青等[12]基于 BP 神经网络建

立了输油管道内腐蚀速率预测模型；Hu 等[13]基于 BP

神经网络模拟试验了海洋环境下 Ni-Cr-Mo-V 高强度

钢的腐蚀情况；陈艳等[11]使用 BP 神经网络拟合了海

水流速与管道腐蚀速率之间的相关情况，发现了管

道腐蚀破坏最为严重的位置；朱庆杰等[14]使用 BP 神

经网络计算结果构建了常州燃气管道土壤腐蚀情况

评估模型。然而，传统 BP 神经网络属于前馈型神经

网络，收敛速度缓慢且易陷入局部最优。因此，学界

开始引入启发式算法优化 BP 神经网络，主要从遗传

算法（最大相对误差为 8.16％）[15]、原子搜索优化算

法（最大相对误差为 9.47％）[16]等角度对 BP 神经网

络进行优化。总体上，现有优化方法相对误差仍然较

大，尚未充分解决 BP 神经网络预测管道腐蚀速率过

程中存在的局限性，因此亟需提升管道腐蚀速率预测

速度与准确性[11]。

在此，针对上述 BP 神经网络法在管道腐蚀速率

预测中存在的不足，提出一种基于改进麻雀搜索算法

优化 BP 神经网络的管道腐蚀速率预测模型。综合多

种改进策略（Multiple Improvement Strategies, MIS），

通过反向学习策略初始化种群，引入混合正余弦算法

更新发现者位置，加入 Levy飞行策略更新追随者位

置，对麻雀搜索算法加以改进。基于改进的麻雀搜索

算法对 BP 神经网络的权重与阈值进行寻优，并基于

100 组 20 钢材料试验获取的均匀腐蚀速率与点蚀速

率样本数据对模型进行验证。

 
1　理论基础 

1.1　BP 神经网络

BP 神经网络是由以 Rumelhart 与 McClelland 为

带头人的科学团队于 1986 年提出的一种对误差进行

训练的多层前馈网络[17-18]。BP 神经网络的“多层”体

现在结构上，该模型包含输入层、隐含层、输出层，信

号在结构中流动以达到信息交换、传递的目标（图 1）。

“前馈”表现为在该模型中信号按照“输入层-隐含层-

输出层”的路线向前传递，信息传播趋势从输入端到

输出端。当输出值与期望输出值的误差超出预期范围

时，BP 算法将反向传播误差以修正各层间的权值与阈

值，正、反向传播交替迭代，使得模型输出值不断逼近

prediction model based on the MIS-SSA-BP neural network has been further verified. The research findings offer new approaches and insights for 

future investigations into the prediction of corrosion rates in oil and gas pipelines. (2 Figures, 8 Tables, 30 References)

Key words: pipeline corrosion rate, prediction, MIS-SSA-BP neural network, algorithm optimization
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期望输出值。在众多神经网络算法中，BP 算法因其

能有效解决工程输入与输出的非线性映射问题而得到

广泛应用[19]。但 BP 算法也有其特定的局限性，例如

对权重的高敏感性会导致局部最优解问题，极大影响

模型的训练精度。若希望利用该算法精确解决实际问

题，还需对 BP 神经网络进行进一步优化改进[20]。

1.2　麻雀搜索算法

麻雀搜索算法（Sparrow Search Algorithm, SSA）

是 Xue 等[21]于 2020 年基于麻雀觅食过程中的各种行

为而开发的一种新型群体智能算法。麻雀在进行觅食

与反捕食时，其种群内部具有明显的分工，根据任务的

不同可分为发现者、追随者、警戒者。其中，发现者负

责为麻雀种群搜寻食物，追随者负责在发现者给出食

物所在位置后获取食物，警戒者则负责对整个觅食过

程进行保护，一旦发现危险将释放警戒信号，麻雀种群

的觅食行为即转变为反捕食行为[22]。

SSA 依据发现者、追随者、警戒者的位置情况与目

标做出群体决策。首先假设一个种群有 n 只麻雀，该

种群用矩阵XX 表示为：

XX＝ 

x 1，1      x 1，2    …  x 1，d

x 2，1      x 2，2    …  x 2，d

xn，1      xn，2    …  xn，d

… … …                     （1）

式中：d 为变量的维数。

麻雀种群的适应度矩阵FF 表示为：

FF＝ 

f（x 1，1      x 1，2  … x 1，d）

f（x 2，1      x 2，2  … x 2，d）

f（xn，1      xn，2  … xn，d）

…                  （2）

式中：f（x）为对应个体的适应度值。

确定 3 种分工不同的麻雀所在位置的变化情况，

其中，发现者的位置变化情况表示为：

X t＋1
i，j ＝

X t
i，j · exp －

i
αtmax

            R 2＜δ st

X t
i，j+Q ·LL                          R 2≥δ st

       （3）

式中： 、 分别为第 t、t+1 次迭代中第 i 只麻雀

在第 j 维的位置；tmax 为最大迭代次数；α 为[0，1]中

的任意随机数；R 2 为警戒值，在区间[0，1]内取值；δ st

为安全值，在区间[0.5，1]内取值；Q 为服从正态分布

的随机数；LL 为 1×d 且元素均为 1 的矩阵。

追随者的位置变化情况表示为：

X t＋1
i，j ＝

Q · exp －
Xw－X t

i，j

i 2                  i＞n /2

X t＋1
p +X t

i，j－X t＋1
p ·AA+ · LL        i≤n /2

  （4）

式中：X t＋1
p 为第 t+1 次迭代中发现者的最佳位置；Xw

为目前全局的最差位置；AA+=AAT(AAAAT)-1，AA为 1×d

且元素均为 1 或-1 的矩阵。

警戒者的位置变化情况表示为：

   X
t＋1
i，j ＝

X t
b+β · X t

i，j－X t
b                     fi＞f g

Xt
i，j+K ·

X t
i，j－Xt

w

（fi－fw）+ε
      fi＝f g

    （5）

式中：X t
b 为第 t 次迭代后全局的最佳位置；β 为步长

控制参数；K 为[-1，1]中的任意随机数；fi 为目前警

戒者个体的适应度值；f g、fw 分别为当前最优、最差适

应度值；ε 为分母不为 0 的常数。

 
2　MIS-SSA-BP神经网络管道腐蚀
速率预测模型

2.1　模型建立

BP 神经网络预测管道腐蚀速率的基础是将输出

层的输出结果与实际结果进行误差对比分析，若误差

未达到设计要求，则将误差从输出层经由隐含层传递

到输入层，进行反向传播以修正权值与阈值，不断迭

代，直到输出层的输出结果在误差允许范围内接近实

际结果[23]。由于 BP 神经网络初始的权值与阈值存在

极强的随机性，最终输出的权值与阈值难以达到全局

最优，预测结果的准确性具有很大的波动性[24]。因此，

该研究采用麻雀搜索算法优化 BP 神经网络的权重与

阈值。此外，由于麻雀搜索算法的收敛方法是直接跳

跃到当前的最优解附近，容易陷入局部最优，在此采用

图 1　BP 神经网络拓扑结构示意图
Fig. 1　Topology of BP neural network
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基于改进麻雀搜索算法优化 BP 神经网络的权重与阈

值，构建 MIS-SSA-BP 神经网络预测模型（图 2）。

2.2　改进策略

2.2.1　反向学习策略

SSA 在前期确定种群时最常使用的是随机初始

化策略。虽然随机初始化策略能避免局部最优解问

题，但会导致算法的收敛速度降低，影响算法的搜索时

间与效率[25]。反向学习（Opposition-based Learning, 

OBL）策略是由 Tizhoosh[26]提出的一种优化策略，其

原理是通过产生已知解的对应相反位置解扩大算法搜

索集，弥补 SSA 收敛速度上的不足。引入 OBL 策略对

SSA 的种群初始化进行改进，这一策略最重要的是确定

经过反向学习后得到的个体：

Xi'＝（Xmax+Xmin）－Xi                    （6）

式中：Xi 为第 i 个个体；Xi' 为Xi 反向学习后的个体；

Xmin、Xmax 分别为种群中个体数量最小值、最大值。

Xi 与Xi' 合并后，将产生一个包含 2 n 个个体的新

种群，求得新种群的适应度函数后，将个体按适应度值

排序，适应度高的前n 个个体构成新的麻雀初始种群。

改进后的算法增加了初期种群的多样性，提高了算法

搜索效率。

2.2.2　混合正余弦算法

发现者定位的猎物位置在整个麻雀捕食过程中

至关重要，会影响群体的觅食结果与行动方向。然

而，SSA 中发现者的位置会因个体差异与局限性而陷

入局部最优解问题[27]。正余弦优化算法（Sine Cosine 

Algorithm, SCA）是一种寻优算法，其原理是利用正余

弦函数的震荡性在全局与局部中交替搜索，从而获取

整体的最优解[28]。在此引入混合正余弦算法对发现

者位置进行更新，以期解决 SSA 中发现者位置更新的

局部最优问题，提高模型整体的搜索能力与准确性。

其中最重要的一步是在改进个体时引入正余弦控制

因子：

X t＋1
i，j ＝

X t
i，j+r 1' · sinr 2 · r 3X best－X t

i，j         R 2＜δ st

X t
i，j+r 1' · cosr 2 · r 3X best－X t

i，j         R 2≥δ st

  （7）

r 1＝a－t
a

tmax
                             （8）

式中：r 1 为发现者的搜索步长；a 为常数；r 2、r 3 均为

[0，2 π]中的任意随机数。

混合正余弦算法有效解决了 SSA 中因为迭代次数

增加而造成的搜索空间减小、种群多样性缺失、局部最优

解产生等问题，提高了模型整体的搜索能力与准确性。

2.2.3　Levy 飞行策略

SSA 中的追随者需依据发现者给出的位置对目标

猎物进行细致的追踪与抓捕，交替使用不同步长更快地

捕获猎物。可见，将追随者的步长设定为固定随机数显

然是不合理的。Paul Levy发现自然界中生物的活动步

长具有不确定性，并在此基础上提出 Levy飞行策略，其

原理是通过根据不同情形改变步长的方法解决局部最

优解与全局搜索能力的矛盾，以此完成模型快速搜索的

任务[29]。引入 Levy飞行策略对追随者位置算法进行

改进，该策略最核心的参数步长 s 不是一个固定数值，

而是由式（9）~式（11）确定的一个随机数：

s＝
μ

|υ | β1/                               （9）

μ~N（0，σμ
2），υ~（0，συ

2）                 （10）

σμ＝

1/β
Γ（1+β）sin（π β /2）

β ·Γ［（1+β）/2］· 2（β－1）/2        （11）

式中：μ 为服从N（0，σμ
2）的随机数；υ 为服从N（0，

συ
2）的随机数；σμ、συ 为标准差。

其中，β＝1.5；συ＝1。

 
3　模型验证 

算法模型的预测精度是评价模型准确性的重要

图 2　MIS-SSA-BP 神经网络预测模型计算流程图
Fig. 2　Calculation process of prediction model based on 

MIS-SSA-BP neural network
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作为测试集时，其相对误差的平均值、最大值、最小

值均最小，此时模型的性能最优，由此设定样本的前

80％作为训练集，样本的后 20％作为测试集。设定麻

雀搜索算法中的麻雀种群数量为 20，发现者数量比例

为 0.7，追随者数量比例为 0.1，警戒者数量比例为 0.2，

警戒值为 0.6。

3.2　模型参数设置

设定 BP 神经网络模型的训练次数为 1 000 次，学

习速率为 0.01，训练目标最小误差为 0.000 001 mm/a，

动量因子为 0.01，最小性能梯度为 10-6 mm2/a2，输入

层节点数为 4，输出层节点数为 1，隐含层节点数为 9。

对比不同测试集尺寸 MIS-SSA-BP 模型预测腐蚀速

率的相对误差（表 3、表 4）可知，当样本数量的后 20％

标准。为衡量基于不同算法构建的模型精度，选择平

均绝对误差 MAE、均方误差 MSE、均方根误差 RMSE

以及平均绝对百分比误差 MAPE 这 4 个指标对模型

精度进行评估[30]。

3.1　数据采集

基于宋成立[4]关于管道腐蚀速率预测的研究，选

取 CO2 分压、H2S 分压、Cl- 质量浓度、温度作为管道

表 3　不同测试集尺寸 MIS-SSA-BP 模型均匀腐蚀速率预测
相对误差对比表

Table 3　Comparison of relative errors in uniform corrosion rate 
prediction by MIS-SSA-BP model across different test set sizes

表 1　管道腐蚀试验条件设置表
Table 1　Test conditions for pipeline corrosion

表 2　现场管道腐蚀影响因素特征指标与腐蚀速率表（部分）
Table 2　Characteristic indexes in influencing factors and corrosion rates from field pipeline corrosion tests (partial)

测试集尺寸
相对误差

最大值 最小值 平均值

10％ 34.28％ 3.47％ 12.49％
20％ 4.67％ 0 1.30％
30％ 21.22％ 0 2.20％

总压/MPa 流速/（m·s-1） pH 试验时间/h
质量浓度/（mg·L-1）

Ca2++Mg2+ SO4
2- HCO3- Na++K+ Br-

2 0.5 6.2 336 800 600 288.62 63 699.82 160

序号
分压/MPa Cl-

质量浓度/
（mg ·L-1）

温度/
℃

均匀
腐蚀速率/

（mm ·a-1)

点蚀速率/
（mm ·a-1) 序号

分压/MPa Cl-

质量浓度/
（mg ·L-1）

温度/
℃

均匀
腐蚀速率/

（mm ·a-1)

点蚀速率/
（mm ·a-1)CO2 H2S CO2 H2S

1 0.010 0.003 00 10 000 40 0.085 2 0.078 2 89 0.255 0.050 00 5 000 50 0.195 0 0.307 6 

2 0.500 0.003 00 10 000 40 0.146 9 0.250 3 90 0.255 0.000 30 100 000 50 0.193 4 0.307 6

3 0.050 0.003 00 10 000 40 0.125 9 0.091 2 91 0.255 0.050 00 100 000 50 0.285 2 0.359 8

4 0.050 0.050 00 10 000 40 0.366 7 0.169 4 92 0.010 0.025 15 5 000 50 0.142 6 0.198 1

5 0.050 0.003 00 10 000 20 0.064 7 0.052 1 93 0.500 0.025 15 5 000 50 0.287 2 0.409 3

6 0.050 0.003 00 10 000 80 0.207 8 0.192 9 94 0.010 0.025 15 100 000 50 0.195 6 0.281 5

7 0.050 0.000 30 10 000 40 0.075 9 0.052 1 95 0.500 0.025 15 100 000 50 0.299 0 0.490 1 

8 0.050 0.003 00 100 000 40 0.142 3 0.234 6 96 0.255 0.000 30 52 500 20 0.097 9 0.093 8

… … … … … … … 97 0.255 0.050 00 525 00 20 0.181 1 0.177 2

86 0.010 0.025 15 52 500 80 0.263 2 0.320 6 98 0.255 0.000 30 52 500 80 0.252 1 0.328 5

87 0.500 0.025 15 52 500 80 0.492 1 0.547 5 99 0.255 0.050 00 52 500 80 0.321 0 0.411 9 

88 0.255 0.000 30 5 000 50 0.122 5 0.273 8 100 0.255 0.025 15 52 500 50 0.162 7 0.247 6

表 4　不同测试集尺寸 MIS-SSA-BP 模型点蚀速率预测相对
误差对比表

Table 4　Comparison of relative errors in pitting corrosion rate 
prediction by MIS-SSA-BP model across different test set sizes

测试集尺寸
相对误差

最大值 最小值 平均值

10％ 17.38％ 0.35％ 6.28％

20％ 1.32％ 0 0.54％

30％ 29.99％ 0.03％ 3.25％

腐蚀速率影响因素的特征指标，选取均匀腐蚀速率与

点腐蚀速率作为管道腐蚀的特征指标。选取一批 20

钢管材进行高温高压动态反应釜试验，基于相关标准

与集输生产环境，设置试验条件（表 1），分别通过失

重法与点蚀深度计算均匀腐蚀速率与点蚀速率，共采

集 100 组腐蚀样本数据进行管道腐蚀速率预测建模

（表 2）。
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3.3　结果与分析

为检验 MIS-SSA-BP 管道腐蚀速率预测模型的预

测精度，将该模型预测值与传统的 BP 模型、SSA-BP

模型预测结果进行对比。

3.3.1　均匀腐蚀速率

为了对比 MIS-SSA-BP 模型、BP 模型、SSA-BP 模

型的管道均匀腐蚀速率预测精度，计算不同模型预测值

与实测值的误差（表 5），可见与 BP 模型、SSA-BP 模型

相比，MIS-SSA-BP 模型预测均匀腐蚀速率的绝对误差、

相对误差均较小，表明 MIS-SSA-BP 神经网络可以有效

提高模型的精确度。为进一步评价模型的预测效果，

分别计算各模型预测均匀腐蚀速率时的 MAE、MSE、

RMSE、MAPE（表 6），可见 MIS-SSA-BP 模型的 MAE、

MSE、MAPE 均显著小于其他模型，其 RMSE 虽略大

于 SSA-BP 模型，但仍处于较低水平。整体上，MIS-

SSA-BP 模型在均匀腐蚀速率预测方面的性能最优。

表 5　不同模型均匀腐蚀速率预测误差统计表
Table 5　Error statistics for uniform corrosion rate prediction across different models

序号

均匀腐蚀速率/（mm·a-1） 绝对误差/（mm·a-1） 相对误差

实测值
BP 模型
预测值

SSA-BP
模型预测值

MIS-SSA-BP
模型预测值

BP 模型
SSA-BP
模型

MIS-SSA-BP
模型

BP 模型
SSA-BP
模型

MIS-SSA-BP
模型

1 0.222 2 0.187 8 0.207 3 0.230 4 0.034 4 0.014 9 0.008 2 15.481 5％ 6.705 7％ 3.690 4％

2 0.280 1 0.264 8 0.281 9 0.271 5 0.015 3 0.001 8 0.008 6 5.462 3％ 0.642 6％ 3.070 3％

3 0.320 9 0.331 9 0.311 4 0.331 7 -0.011 0 0.009 5 0.010 8 3.427 9％ 2.960 4％ 3.365 5％

4 0.192 1 0.102 6 0.163 0 0.191 8 0.089 5 0.029 1 0.000 3 46.590 3％ 15.148 4％ 0.156 2％

5 0.201 2 0.201 7 0.203 8 0.201 5 0.000 5 0.002 6 0.000 3 0.248 5％ 1.292 2％ 0.149 1％

6 0.263 2 0.251 4 0.363 6 0.263 3 0.011 8 0.100 4 0.000 1 4.483 3％ 38.145 9％ 0.038 0％

7 0.492 1 0.343 2 0.471 4 0.469 1 0.148 9 0.020 7 0.023 0 30.258 1％ 4.206 5％ 4.673 8％

8 0.122 5 0.123 1 0.104 5 0.122 4 0.000 6 0.018 0 0.000 1 0.489 8％ 14.693 9％ 0.081 6％

9 0.195 0 0.256 8 0.242 7 0.195 5 0.061 8 0.047 7 0.000 5 31.692 3％ 24.461 5％ 0.256 4％

10 0.193 4 0.196 1 0.167 4 0.193 7 0.002 7 0.026 0 0.000 3 1.396 1％ 13.443 6％ 0.155 1％

11 0.285 2 0.324 9 0.254 9 0.297 2 0.039 7 0.030 3 0.012 0 13.920 1％ 10.624 1％ 4.207 6％

12 0.142 6 0.139 1 0.148 3 0.142 5 0.003 5 0.005 7 0.000 1 2.454 4％ 3.997 2％ 0.070 1％

13 0.287 2 0.240 5 0.257 3 0.287 2 0.046 7 0.029 9       0 16.260 4％ 10.410 9％     0 

14 0.195 6 0.212 9 0.208 9 0.188 6 0.017 3 0.013 3 0.007 0 8.844 6％ 6.799 6％ 3.578 7％

15 0.299 0 0.310 5 0.300 9 0.299 5 0.011 5 0.001 9 0.000 5 3.846 2％ 0.635 5％ 0.167 2％

16 0.097 9 0.087 7 0.090 5 0.099 0 0.010 2 0.007 4 0.001 1 10.418 8％ 7.558 7％ 1.123 6％

17 0.181 1 0.218 4 0.192 3 0.182 7 0.037 3 0.011 2 0.001 6 20.596 4％ 6.184 4％ 0.883 5％

18 0.252 1 0.235 0 0.264 5 0.252 0 0.017 1 0.012 4 0.000 1 6.783 0％ 4.918 7％ 0.039 7％

19 0.321 0 0.356 1 0.315 3 0.320 6 0.035 1 0.005 7 0.000 4 10.934 6％ 1.775 7％ 0.124 6％

20 0.162 7 0.226 7 0.237 6 0.163 1 0.064 0 0.074 9 0.000 4 39.336 2％ 46.035 6％ 0.245 9％

表 6　不同模型预测均匀腐蚀速率评价指标对比表
Table 6　Comparison of evaluation indexes for uniform 

corrosion rate prediction across different models

模型
MAE/

（mm·a-1）
MSE/

（mm2 · a-2）
RMSE/

（mm·a-1）
MAPE

BP 0.032 950 0 0.002 351 10 0.048 488 13.65％

SSA-BP 0.018 178 0 0.000 644 00 0.025 377 9.14％

MIS-SSA-BP 0.006 522 4 0.000 759 76 0.027 564 1.45％

3.3.2　点蚀速率

基于点蚀速率样本数据，对比分析 3 类预测模型

并统计预测误差（表 7），相比传统的 BP 模型、SSA-

BP 模型，MIS-SSA-BP 模型的预测值更为准确，绝对

误差、相对误差均较小，预测结果显著优于传统的 BP

模型与 SSA-BP 模型。对比各模型预测点蚀速率时的

MAE、MSE、RMSE、MAPE（表 8），可见 MIS-SSA-

肖述辉，等：改进麻雀搜索算法优化 BP 神经网络管道腐蚀速率预测模型
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BP 模型的精度最高，4 项误差分析指标均在数量级上

优于 BP 模型、SSA-BP 模型，因此 MIS-SSA-BP 模型

能较好应用于油气管道腐蚀速率的预测。

 
4　结论 

针对传统 BP 神经网络存在的收敛速度慢、最优

结果局限等缺点，通过建立基于改进麻雀搜索算法

优化 BP 神经网络的管道腐蚀速率预测模型，选取

100组 20钢均匀腐蚀速率与点腐速率作为样本数据，

对模型进行实例验证，得到如下结论：

1）通过反向学习策略初始化种群、混合正余弦算

法更新发现者位置、加入 Levy飞行策略更新追随者位

置对麻雀搜索算法进行改进，并将其用于优化 BP 神经

网络的权重与阈值。相较 BP 神经网络与 SSA-BP 神

经网络，改进后的麻雀搜索算法优化 BP 神经网络模

型预测收敛速度更快，预测准确性更高，有效避免了优

化过程中陷入局部最优的现象。

2）分别使用 BP、SSA-BP、MIS-SSA-BP 神经网

络管道腐蚀速率预测模型对管道均匀腐蚀速率与点

蚀速率数据进行训练与预测，MIS-SSA-BP 管道腐蚀

速率预测模型的精度最优，可为油气混输管道的腐蚀

表 7　不同模型预测点蚀速率误差统计表
Table 7　Error statistics for pitting corrosion rate prediction across different models

序号

点蚀速率/（mm·a-1） 绝对误差/（mm·a-1） 相对误差

实测值
BP 模型
预测值

SSA-BP 模
型预测值

MIS-SSA-BP
模型预测值

BP 模型
SSA-BP
模型

MIS-SSA-BP
模型

BP 模型
SSA-BP
模型

MIS-SSA-BP
模型

1 0.148 6 0.184 4 0.160 5 0.149 8 0.035 8 0.011 9 0.001 2 24.091 5％ 8.008 1％ 0.807 5％

2 0.320 6 0.391 8 0.276 3 0.320 6 0.071 2 0.044 3       0 22.208 4％ 13.817 8％     0

3 0.469 3 0.465 0 0.488 0 0.475 5 0.004 3 0.018 7 0.006 2 0.916 3％ 3.984 7％ 1.321 1％

4 0.091 3 0.048 8 0.099 1 0.090 1 0.042 5 0.007 8 0.001 2 46.549 8％ 8.543 3％ 1.314 3％

5 0.208 6 0.254 4 0.233 8 0.209 9 0.045 8 0.025 2 0.001 3 21.955 9％ 12.080 5％ 0.623 2％

6 0.320 6 0.327 1 0.351 6 0.323 7 0.006 5 0.031 0 0.003 1 2.027 4％ 9.669 4％ 0.966 9％

7 0.547 5 0.523 7 0.519 5 0.547 6 0.023 8 0.028 0 0.000 1 4.347 0％ 5.114 2％ 0.018 3％

8 0.273 8 0.208 3 0.236 1 0.272 1 0.065 5 0.037 7 0.001 7 23.922 6％ 13.769 2％ 0.620 9％

9 0.307 6 0.296 6 0.293 6 0.307 3 0.011 0 0.014 0 0.000 3 3.576 1％ 4.551 4％ 0.097 5％

10 0.307 6 0.287 6 0.308 5 0.308 4 0.020 0 0.000 9 0.000 8 6.502 0％ 0.292 6％ 0.260 1％

11 0.359 8 0.376 8 0.365 4 0.359 3 0.017 0 0.005 6 0.000 5 4.724 8％ 1.556 4％ 0.139 0％

12 0.198 1 0.144 9 0.162 8 0.196 2 0.053 2 0.035 3 0.001 9 26.855 1％ 17.819 3％ 0.959 1％

13 0.409 3 0.361 7 0.409 5 0.407 2 0.047 6 0.000 2 0.002 1 11.629 6％ 0.048 9％ 0.513 1％

14 0.281 5 0.222 2 0.296 0 0.285 2 0.059 3 0.014 5 0.003 7 21.065 7％ 5.151 0％ 1.314 4％

15 0.490 1 0.440 1 0.502 7 0.489 2 0.050 0 0.012 6 0.000 9 10.202 0％ 2.570 9％ 0.183 6％

16 0.093 8 0.105 0 0.097 6 0.094 1 0.011 2 0.003 8 0.000 3 11.940 3％ 4.051 2％ 0.319 8％

17 0.177 2 0.189 2 0.177 6 0.177 7 0.012 0 0.000 4 0.000 5 6.772 0％ 0.225 7％ 0.282 2％

18 0.328 5 0.387 9 0.318 9 0.330 6 0.059 4 0.009 6 0.002 1 18.082 2％ 2.922 4％ 0.639 3％

19 0.411 9 0.469 7 0.436 2 0.413 0 0.057 8 0.024 3 0.001 1 14.032 5％ 5.899 5％ 0.267 1％

20 0.247 6 0.292 0 0.241 3 0.248 1 0.044 4 0.006 3 0.000 5 17.932 1％ 2.544 4％ 0.201 9％

表 8　不同模型点蚀速率预测评价指标对比表
Table 8　Comparison of evaluation indexes for pitting 

corrosion rate prediction across different models

模型
MAE/

（mm·a-1）
MSE/

（mm2 · a-2）
RMSE/

（mm·a-1）
MAPE

BP 0.036 914 0 0.001 810 10 0.042 546 0 14.97％

SSA-BP 0.016 612 0 0.000 444 82 0.021 091 0 6.13％

MIS-SSA-BP 0.001 466 8 0.000 004 22 0.002 055 1 0.54％
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速率预测领域提供新的方法与工具。

3）MIS-SSA-BP 管道腐蚀速率预测模型具有良好

的预测性能，可用于管道腐蚀预测，但在现实应用中管

道腐蚀往往面临更为复杂的情况。因此，后续研究可

构建管道腐蚀数据库，利用大样本数据进一步对模型

进行逼真与拟合。此外，可以尝试加入噪音数据或随

机数据进行进一步研究。
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