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Abstract: [Objective] Supercritical CO, pipeline transmission is deemed the most cost-effective solution to address the carbon source-
sink mismatch in Carbon Capture, Utilization, and Storage (CCUS) technology. However, during venting operations required for pipeline
maintenance, the vented pipeline segment might drop below —20 ‘C due to the phase change and Joule-Thomson effect, potentially leading
to brittle fractures in the pipeline. [Methods] OLGA software was used to establish a venting model for supercritical CO, pipelines. The
subsequent comparison between the simulation results and experimental data demonstrated the accuracy of OLGA software in predicting
CO, phase changes, temperature reductions, and pressure drops. On this basis, an intermittent venting design was proposed. In addition,
simulations were conducted to analyze the influence of vent valve openings on the durations of the venting process and the temperature
escalation process post valve closure under varying initial pressures and temperatures. [Results] Within the vented pipeline segment of the
entire trunk pipeline, the vent point was identified as the most dangerous as it is the first to experience temperature drops under —20 C.
Decreasing valve openings led to an exponential increase in the duration required to reach —20 “C at this point. As the vent valve openings
decreased, the total venting volume for a single valve opening operation increased, resulting in lower average venting rates and elevated time

costs for venting. Conversely, excessively large vent valve openings led to a reduction in the total venting volume for a single valve opening
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operation. Moreover, high pressure levels throughout the vented segment of the trunk pipeline also prolonged the duration needed to fully

vent the medium in the pipeline until it reached atmospheric pressure. The temperature escalation of the medium in the pipeline following

valve closure may be divided into two stages respectively dominated by axial heat transfer or radial heat transfer, and the former stage was

observed at a higher rate of temperature rise. As the valve openings increased, the time taken for temperature escalation after valve closure

tended to stabilize following initial rapid increments. [Conelusion] Both excessively large or small vent valve openings lead to prolonged

venting durations. In engineering applications, the temperatures or pressures at the vent point may be linked with the vent valve actions.

However, to guarantee control reliability and minimize total venting durations, it is crucial to rationally choose vent valve openings for each

action. (14 Figures, 3 Tables, 25 References)

Key words: supercritical CO,, pipeline transmission, block valve station venting, intermittent venting
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Table 1 Main parameters of experimental pipeline for CO,
relief of Germanischer Lloyd
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Fig.4 Comparison between simulation and experimental
results of pressure and temperature changes at different
distances from the vent point on the vent piping
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Fig.5 Curves of temperature, pressure, and phase changes of
CO, at the vent point under varying conditions
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Table 2 Conditions of OLGA model for venting simulation

TH W wﬁ ﬁ/Mzm R UEAC | TR e 1 IFE m;; ﬁ/M;aw L RE e
1 5% 10.4 10 40 11 20% 8.4 8 40
2 5% 10.4 10 35 12 20% 8.4 8 35
3 5% 8.4 8 40 13 50% 10.4 10 40
4 5% 8.4 8 35 14 50% 10.4 10 35
5 10% 10.4 10 40 15 50% 8.4 8 40
6 10% 10.4 10 35 16 50% 8.4 8 35
7 10% 8.4 8 40 17 100% 10.4 10 40
8 10% 8.4 8 35 18 100% 10.4 10 35
9 20% 10.4 10 40 19 100% 8.4 8 40
10 20% 10.4 10 35 20 100% 8.4 8 35
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Fig. 6 Durations required to reach —20 C at the vent point
under varying valve openings and conditions
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Fig. 9 Temperature profile of trunk pipeline vented segment with the vent point dropping to —20 ‘C corresponding to under
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Fig. 8 Pressure profile of trunk pipeline vented segment with the vent point dropping to —20 °C corresponding to different valve openings
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Fig. 10 Curves of temperature changes at the vent point
corresponding to different conditions
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Fig. 12  Pressure profile of trunk pipeline vented segment after temperature escalation post valve closure corresponding to different valve openings
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Fig. 13 Temperature profile of trunk pipeline vented segment after temperature escalation post valve closure corresponding to
different valve openings
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Fig. 14 Curves of pressure and temperature changes at the vent point throughout the intermittent venting process
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