李萌,聂超飞,欧阳欣,等. 超临界CO2管道输送理论与仿真研究进展[J]. 油气储运,2025,44(5):1−13.
引用本文: 李萌,聂超飞,欧阳欣,等. 超临界CO2管道输送理论与仿真研究进展[J]. 油气储运,2025,44(5):1−13.
LI Meng, NIE Chaofei, OUYANG Xin, et al. Research progress on theory and simulation of supercritical CO2 pipeline transportation[J]. Oil & Gas Storage and Transportation, 2025, 44(5): 1−13.
Citation: LI Meng, NIE Chaofei, OUYANG Xin, et al. Research progress on theory and simulation of supercritical CO2 pipeline transportation[J]. Oil & Gas Storage and Transportation, 2025, 44(5): 1−13.

超临界CO2管道输送理论与仿真研究进展

Research progress on theory and simulation of supercritical CO2 pipeline transportation

  • 摘要:
    目的 随着碳捕集、利用与封存(CCUS)技术不断发展,超临界CO2管输技术研究势在必行,完善超临界CO2管道输送基础理论体系是保障管道安全、高效运行的前提。
    方法 讨论了含杂质CO2物性的特殊性及其对管道输送特性的影响,总结梳理了超临界CO2管道水热力计算采用的主要方法及存在的问题,阐述了超临界CO2管道减压及泄漏扩散试验与理论研究进展,并展望了超临界CO2管输理论与仿真研究发展趋势,以期能够提升中国CO2管输工艺设计及工程应用水平、促进CCUS技术大规模发展。
    结果 工业捕集的CO2含有多种杂质,使CO2物性发生偏移、气液两相区范围扩大,进而增大管输相态控制难度,超临界CO2管道仿真研究应重点考虑杂质的影响;常规油气管道仿真技术在模型选择与求解方法方面都做了近似处理,难以保证超临界CO2管道的预测精度,应结合实际工程数据对相关模型与算法加以改进;目前研究虽对超临界CO2管道泄漏减压过程已取得初步认识,但相关机理研究仍不足,模拟方法亦有待完善,未来需统一试验条件,深化理论研究,构建更精确的物理与数学模型。
    结论 超临界CO2管输技术具有良好的应用效果与广阔的市场前景,深入开展相关理论与仿真研究,对突破CO2管输技术瓶颈、推动CCUS产业链发展具有重要意义。

     

    Abstract:
    Objective With the ongoing development of carbon capture, utilization, and storage (CCUS) technology, researching supercritical CO2 pipeline transportation technology has become essential. Enhancing the fundamental theoretical system for supercritical CO2 pipeline transportation is crucial for ensuring the safe and efficient operation of these pipelines.
    Methods This paper primarily discusses the unique physical properties of impurity-containing CO2 and their impact on pipeline transportation characteristics. It summarizes the major methods employed in hydrothermal calculations for supercritical CO2 pipelines, as well as the existing challenges in this area. The paper further elaborates on the advancements in experimental and theoretical research regarding pressure reduction, leakage, and diffusion in supercritical CO2 pipelines. Additionally, it presents future perspectives on the development trends of theoretical and simulation research in the field of supercritical CO2 pipeline transportation. The study aims to enhance the technological design and engineering application of CO2 pipeline transportation in China, ultimately facilitating the large-scale development of CCUS technology.
    Results CO2 captured in industrial processes contains various impurities, which lead to deviations in its physical properties and broaden the ranges of gas-liquid two-phase regions. These changes complicate phase control during pipeline transportation. Consequently, the influence of impurities must be emphasized in the simulation studies of supercritical CO2 pipelines. Conventional simulation techniques for oil and gas pipelines often involve approximate treatments in model selection and solving methods, making it challenging to ensure prediction accuracy for supercritical CO2 pipelines. Therefore, these models and algorithms need to be modified to incorporate actual engineering data. Although a preliminary understanding of the depressurization process during supercritical CO2 pipeline leakage has been established through existing studies, research on relevant mechanisms remains insufficient, and simulation methods require further improvement. It is recommended to standardize experimental conditions, deepen theoretical research, and develop more accurate physical and mathematical models in future studies.
    Conclusion Given the positive application outcomes and broad market prospects of supercritical CO2 pipeline transportation technology, in-depth theoretical and simulation research is of great significance for overcoming relevant bottlenecks and advancing the development of the CCUS industry chain.

     

/

返回文章
返回