雷志良,余林辉,于天,等. 喷气燃料卧式过滤分离器工作特性数值模拟[J]. 油气储运,2025,x(x):1−9.
引用本文: 雷志良,余林辉,于天,等. 喷气燃料卧式过滤分离器工作特性数值模拟[J]. 油气储运,2025,x(x):1−9.
LEI Zhiliang, YU Linhui, YU Tian, et al. Numerical simulation of operating characteristics of horizontal filter separators for jet fuel[J]. Oil & Gas Storage and Transportation, 2025, x(x): 1−9.
Citation: LEI Zhiliang, YU Linhui, YU Tian, et al. Numerical simulation of operating characteristics of horizontal filter separators for jet fuel[J]. Oil & Gas Storage and Transportation, 2025, x(x): 1−9.

喷气燃料卧式过滤分离器工作特性数值模拟

Numerical simulation of operating characteristics of horizontal filter separators for jet fuel

  • 摘要:
    目的 近年来随着中国民航事业的迅猛发展,国家对航空燃油的市场需求急剧增加,航空燃油质量控制成为民航业中的重中之重,研究过滤分离器的工作特性对保证航空燃油质量至关重要。
    方法 采用正交试验设计与数值模拟方法对不同聚结滤芯数量(3个、4个、7个)、入口流量(98 m3/h、131 m3/h、230 m3/h)、聚结滤芯渗透率(1.74×10−9 m2、1.74×10−10 m2、1.74×10−11 m2)及分离滤芯渗透率(1.82×10−7 m2、1.82×10−8 m2、1.82×10−9 m2)下过滤分离器进口与聚结滤芯出口面速度差(简称速度差)、过滤分离器进出口压降(简称压降)特性进行研究,并取速度差最优方案进行固有频率分析,以验证模型内部滤芯是否发生共振。
    结果 以速度差为评价指标时,速度差越大方案越优。对速度差影响最显著的因素为入口流量,最优方案为A1B3C2D2,即设置7个渗透率1.74×10−11 m2的聚结滤芯,且入口流量230 m3/h,分离滤芯渗透率为1.82×10−7 m2;以压降为评价指标时,压降越小方案越优。对压降影响最显著的因素为聚结滤芯渗透率,最优方案为A1B1C1D3,即设置7个渗透率1.74×10−9 m2的聚结滤芯,且入口流量98 m3/h,分离滤芯渗透率为1.82×10−9 m2。通过对以速度差为评价指标优选出的方案进行固有频率特性分析,发现其内部滤芯之间湍流脉动力的主频率小于滤芯一阶固有频率,表明所设计的过滤分离器结构不会引发共振造成滤芯受损。
    结论 在工艺设计的过程中,建立一套具有针对性的、系统的理论体系来指导设计速度差大、压降小的过滤分离器意义重大。研究成果可提高喷气燃料卧式过滤分离器的工作特性,延长其使用寿命,为喷气燃料卧式过滤分离器的优化设计提供理论基础。

     

    Abstract:
    Objective In recent years, the rapid growth of China’s civil aviation industry has led to a significant increase in aviation fuel demand, making quality control a top priority. Understanding the operating characteristics of filter separators is crucial for ensuring aviation fuel quality.
    Methods Orthogonal tests and numerical simulations were conducted to analyze the velocity difference between the filter separator inlet and the coalescing filter element outlet face, as well as the pressure drop between the separator inlet and outlet, under varying conditions: the number of coalescing filter elements (3, 4, 7), inlet flow rate (98 m3/h, 131 m3/h, 230 m3/h), coalescing filter element permeability (1.74×10−9 m2, 1.74×10−10 m2, 1.74×10−11 m2), and separation filter element permeability (1.82×10−7 m2, 1.82×10−8 m2, 1.82×10−9 m2). The optimal velocity difference scheme was then subjected to inherent frequency analysis to determine whether resonance occurred in the filter elements within the model.
    Results When velocity difference served as an evaluation index, a larger difference indicated a more favorable scheme. The inlet flow emerged as the most significant factor affecting the velocity difference, with the optimal scheme identified as A1B3C2D2. This scheme involved the use of seven coalescing filter elements with a permeability of 1.74×10−11 m2, an inlet flow of 230 m3/h, and a separation filter element permeability of 1.82×10−7 m2. When pressure drop served as the evaluation index, a smaller pressure drop correlated with a better scheme. The permeability of coalescing filter elements emerged as the most significant factor affecting the pressure drop, with the optimal scheme identified as A1B1C1D3. This scheme involved the use of seven coalescing filter elements with a permeability of 1.74×10−9 m2, an inlet flow of 98 m3/h, and a separation filter element permeability of 1.82×10−9 m2. Analysis of the inherent frequency characteristics of the optimal scheme, using velocity difference as the evaluation index, revealed that the main frequency of the turbulent fluctuating force between the internal filter elements was lower than the first-order inherent frequency of the filter element. This indicated that the designed structure of the filter separator would not cause resonance that could damage the filter element.
    Conclusion During process design, it is crucial to establish a set of pertinent and systematic theoretical system to guide the design of filter separators with large velocity difference and small pressure drop. The research results can enhance the operating characteristics of horizontal filter separators for jet fuel, extend their service life, and provide a theoretical foundation for optimal design.

     

/

返回文章
返回