宋伟. 解决微波在传输中衰落的方法[J]. 油气储运, 1997, 16(1): 39-42.
引用本文: 宋伟. 解决微波在传输中衰落的方法[J]. 油气储运, 1997, 16(1): 39-42.
Song Wei. Method for Dealing with MW Depletion in Transmission[J]. Oil & Gas Storage and Transportation, 1997, 16(1): 39-42.
Citation: Song Wei. Method for Dealing with MW Depletion in Transmission[J]. Oil & Gas Storage and Transportation, 1997, 16(1): 39-42.

解决微波在传输中衰落的方法

Method for Dealing with MW Depletion in Transmission

  • 摘要: 数字微波在传输过程中衰落包括大气吸收衰落、雨雾散射衰落、K型衰落、波导型衰落、闪烁衰落、频率选择性衰落,它们对无线通信有不同程度的影响。K型衰落、波导型衰落和频率选择性衰落对微波线路影响最大,并不可预见;大气吸收衰落和雨雾衰落可根据天气情况预测,并在设计中根据近20年的天气情况预留出衰落储备。在一定条件下,频率选择性衰落可忽略,影响视距微波传输的只是平衰落,其统计特性用瑞利分布函数描述。提出了在设计中要充分考虑各种衰落对微波传输的影响,采取相应措施,使设备误码率在1×10-6以下。

     

    Abstract: In digital MW transmission, depletion includes atmosphere absorbing decay, rain & fog scattering, F-selective decay, K-type decay and waveguide decay which gives different influence to communication, and among them, type K decay, waveguide decay and F-selective decay give the most grievous influence to micro-wave line which can't be predicted. Atmosphere absorbing decay and rain & fog decay can be predicted along with weather change. A pre-reservation of decay can be planed out according to late 20 years' forecast records. In some case, F-selective decay can be ignored, it is only square-topped decay that influemce MW transmission, of which statistic character is described by Raleigh function. The article points out that a fully consideration about the influence caused by different decay must be given, in order to keep error code rate below 1×10-6.

     

/

返回文章
返回