王维斌, 周芮, 魏然然, 孙浩轩, 聂超飞, 刘振翼, 马建博, 吴俊婕. 尺寸效应与环境风速耦合作用下甲醇池火灾的燃烧特性[J]. 油气储运. DOI: 10.6047/j.issn.1000-8241.202505090243
引用本文: 王维斌, 周芮, 魏然然, 孙浩轩, 聂超飞, 刘振翼, 马建博, 吴俊婕. 尺寸效应与环境风速耦合作用下甲醇池火灾的燃烧特性[J]. 油气储运. DOI: 10.6047/j.issn.1000-8241.202505090243
WANG Weibin, Zhou Rui, Wei Rannan, Sun Haoxuan, NIE Chaofei, LIU Zhenyi, Ma Jianbo, Wu Junjie. Combustion characteristics of methanol pool fires under the coupling effect of pool size and ambient wind speed[J]. Oil & Gas Storage and Transportation. DOI: 10.6047/j.issn.1000-8241.202505090243
Citation: WANG Weibin, Zhou Rui, Wei Rannan, Sun Haoxuan, NIE Chaofei, LIU Zhenyi, Ma Jianbo, Wu Junjie. Combustion characteristics of methanol pool fires under the coupling effect of pool size and ambient wind speed[J]. Oil & Gas Storage and Transportation. DOI: 10.6047/j.issn.1000-8241.202505090243

尺寸效应与环境风速耦合作用下甲醇池火灾的燃烧特性

Combustion characteristics of methanol pool fires under the coupling effect of pool size and ambient wind speed

  • 摘要: 【目的】甲醇在环境保护与可再生能源发展中发挥着重要作用,近年来甲醇相关事故频发,如何安全使用已引起高度关注。池火灾是最常见、最典型的火灾形式之一,往往发生在富氧的开放空间,其中尺寸效应与环境风速可显著影响甲醇池火灾的燃烧特性。【方法】自主设计并搭建了甲醇池火灾实验平台,对3种不同液池尺寸、不同环境风速下的池火灾过程开展研究,探讨尺寸效应与环境风速耦合作用下甲醇池火灾的燃烧速率、火焰温度及环境温度的变化规律,揭示相关影响机制。【结果】①无风条件下,甲醇池火灾的燃烧速率随液池尺寸的增加而增大,这是由于当前液池尺寸下甲醇池火灾为火焰热辐射占主导地位。②有风条件下,在风速增加的过程中存在一个与液池尺寸正相关的临界风速;当风速小于临界风速时,燃烧速率随风速的增加单调递增;当风速大于临界风速时,燃烧速率随风速的增加而单调递减;该现象由动力学促进与热力学抑制的竞争机制共同作用所致。③火焰温度随风速的增加先增大后减小,风速对火焰温度的影响机理与燃烧速率类似。此外,在热辐射主导的热量传递过程中,液面的面积越大,接收到的热量越多,因此液池尺寸越大,火焰温度越高。④环境风的存在会打破液池两侧环境温度的对称性。环境风对温度场存在影响火焰形态与影响空气对流的两种作用,因此池火灾周围的温度场分布规律存在较大差异。【结论】通过实验明确了尺寸效应与环境风速耦合下的甲醇池火灾燃烧特性,为甲醇的安全研究提供了参考依据。

     

    Abstract: Objective Methanol plays a crucial role in environmental protection and renewable energy development. However, frequent methanol-related accidents have raised safety concerns. Pool fires, common in oxygen-rich open environments, are significantly influenced by factors such as the pool size and ambient wind speed, which significantly affect their combustion characteristics. Methods A methanol pool fire experiment platform was independently designed and constructed to investigate the combustion processes of methanol pool fires across three pool sizes and varying ambient wind speeds. The changes in the combustion rate, flame temperature and ambient temperature of methanol pool fires under the coupling effect of pool size and ambient wind speed were explored to elucidate the underlying influencing mechanisms. Results 1) Under windless conditions, the combustion rate of methanol pool fires increased with pool size, primarily due to the dominance of flame thermal radiation at the current liquid pool size. 2) Under windy conditions, a critical wind speed—positively correlated with pool size—was observed. Below this threshold, the combustion rate increased with wind speed; above it, the rate decreased. This behavior resulted from the interplay between dynamic promotion and thermodynamic inhibition mechanisms. 3) Flame temperature initially rose and then declined as wind speed increased, similar to the influence on the combustion rate. Additionally, when thermal radiation dominated heat transfer, larger pool surfaces received more heat, resulting in higher flame temperatures for larger pools. 4) Ambient wind disrupted the symmetry of the temperature field around the pool, affecting both flame morphology and air convection. Consequently, significant differences emerged in the temperature field distribution surrounding the pool fire. Conclusion Experiments elucidate the combustion characteristics of methanol pool fires under the coupling effect of pool size and ambient wind speed, providing valuable insights for the safe use of methanol.

     

/

返回文章
返回