李子禾, 朱建鲁, 苗青, 闫峰, 欧阳欣, 聂超飞, 韩辉, 李玉星. PLNG中CO2液固相平衡试验测定与理论计算[J]. 油气储运, 2024, 43(9): 1039-1047. DOI: 10.6047/j.issn.1000-8241.2024.09.009
引用本文: 李子禾, 朱建鲁, 苗青, 闫峰, 欧阳欣, 聂超飞, 韩辉, 李玉星. PLNG中CO2液固相平衡试验测定与理论计算[J]. 油气储运, 2024, 43(9): 1039-1047. DOI: 10.6047/j.issn.1000-8241.2024.09.009
LI Zihe, ZHU Jianlu, MIAO Qing, YAN Feng, OUYANG Xin, NIE Chaofei, HAN Hui, LI Yuxing. Experimental determination and theoretical calculation for CO2 liquid-solid phase equilibrium in PLNG[J]. Oil & Gas Storage and Transportation, 2024, 43(9): 1039-1047. DOI: 10.6047/j.issn.1000-8241.2024.09.009
Citation: LI Zihe, ZHU Jianlu, MIAO Qing, YAN Feng, OUYANG Xin, NIE Chaofei, HAN Hui, LI Yuxing. Experimental determination and theoretical calculation for CO2 liquid-solid phase equilibrium in PLNG[J]. Oil & Gas Storage and Transportation, 2024, 43(9): 1039-1047. DOI: 10.6047/j.issn.1000-8241.2024.09.009

PLNG中CO2液固相平衡试验测定与理论计算

Experimental determination and theoretical calculation for CO2 liquid-solid phase equilibrium in PLNG

  • 摘要:
    目的 浮式液化天然气(Floating Liquefied Natural Gas, FLNG)装置相比传统海底管道更适用于海上天然气的开发,但目前其造价高昂,对于部分气田而言经济性并不可观,因此其推广应用价值受到一定的限制。为解决FLNG装置造价高昂的问题,提出带压液化天然气(Pressurized Liquefied Natural Gas, PLNG)技术。带压条件下天然气液化温度上升,CO2杂质溶解度也随之增大,对于CO2含量不高的气源,天然气预处理装置可实现简化甚至取消。为得到PLNG的气质处理指标,需对CO2在PLNG中的液固相平衡机理展开研究。
    方法 设计并搭建新型液固相平衡试验装置,其具有可视化与连续取样功能,借助该装置开展CO2液固相平衡试验测定;构建了基于液固相平衡原理的CO2固体溶解度理论计算模型,利用试验数据通过遗传算法对二元交互作用系数进行优化。
    结果 试验结果表明:在162 K左右(对应纯甲烷饱和蒸汽压约1.7 MPa),CO2固体在液化天然气中的溶解度超过1.5%。计算结果表明:经过遗传算法的优化,理论计算模型对于CO2固体溶解度的计算精度得到提高,以CO2在纯甲烷中的溶解度为例,优化后模型的计算结果与试验数据的平均百分比相对误差由10.83%降至2.333 6%。
    结论 研究结果为带压液化条件下CO2预处理气质指标的制定提供了计算精度较高的理论计算模型,同时也为后续液固相平衡研究提供了试验装置,未来可通过该装置开展对PLNG温区下重烃组分在LNG中的液固相平衡研究,从而建立较完善的杂质析出模型。

     

    Abstract:
    Objective Compared with traditional submarine pipelines, Floating Liquefied Natural Gas (FLNG) facilities are deemed more suitable for the exploitation of offshore natural gas. However, their current high cost presents challenges in terms of economic efficiency for some gas fields, limiting their widespread adoption and application to some extent. Pressurized Liquefied Natural Gas (PLNG) technology has emerged as a solution to this issue associated with FLNG. Under pressurization conditions, the liquefaction temperature of natural gas increases, leading to a rise in the solubility of impurities such as carbon dioxide. This property enables the adoption of a simplified natural gas pretreatment unit, and even the exclusion of this unit in some cases, for gas sources with a low CO2 content. Understanding the liquidsolid phase equilibrium mechanism of CO2 in PLNG is crucial for determining the gas-mass treatment indicators of PLNG.
    Methods A novel liquid-solid phase equilibrium test setup was designed and built with visualization and continuous sampling functions. This setup was employed to experimentally determine the liquid-solid phase equilibrium of carbon dioxide. Furthermore, a theoretical calculation model of CO2 solid solubility was developed, following the principle of liquid-solid phase equilibrium. The binary interaction coefficient was optimized using the genetic algorithm and test data.
    Results In the test, the solubility of carbon dioxide solid in LNG exceeded 1.5% at approximately 162 K (equivalent to the saturated vapor pressure of pure methane at around 1.7 MPa). The calculations demonstrated improved accuracy in CO2 solid solubility derived from the established model that was optimized using the genetic algorithm. For instance, considering the solubility of CO2 in pure methane, the average relative percentage error between the results calculated using the optimized model and test data decreased significantly from 10.83% to 2.333 6%.
    Conclusion This study provides a theoretical calculation model with high accuracy, which can be utilized as the foundation for establishing gas-mass indicators for carbon dioxide pretreatment under pressurized liquefaction conditions. The test setup developed in this research is well-suited for future explorations into the liquid-solid phase equilibrium of heavy hydrocarbon components in LNG within the PLNG temperature range. Additionally, this setup has the potential to contribute to the development of a robust impurity precipitation model.

     

/

返回文章
返回