朱文卫, 许成昊, 王兴华, 梁爱武. 高压交流输电线路与并行埋地管道安全距离计算模型[J]. 油气储运, 2024, 43(7): 778-786. DOI: 10.6047/j.issn.1000-8241.2024.07.007
引用本文: 朱文卫, 许成昊, 王兴华, 梁爱武. 高压交流输电线路与并行埋地管道安全距离计算模型[J]. 油气储运, 2024, 43(7): 778-786. DOI: 10.6047/j.issn.1000-8241.2024.07.007
ZHU Wenwei, XU Chenghao, WANG Xinghua, LIANG Aiwu. Computational model of safe distance between HVAC transmission line and parallel buried pipeline[J]. Oil & Gas Storage and Transportation, 2024, 43(7): 778-786. DOI: 10.6047/j.issn.1000-8241.2024.07.007
Citation: ZHU Wenwei, XU Chenghao, WANG Xinghua, LIANG Aiwu. Computational model of safe distance between HVAC transmission line and parallel buried pipeline[J]. Oil & Gas Storage and Transportation, 2024, 43(7): 778-786. DOI: 10.6047/j.issn.1000-8241.2024.07.007

高压交流输电线路与并行埋地管道安全距离计算模型

Computational model of safe distance between HVAC transmission line and parallel buried pipeline

  • 摘要:
    目的 中国经济的蓬勃发展加快了公共能源走廊的形成,由于架空线路与油气管道在工程选址上的趋同性,两者交叉跨越、近距离并行或相互靠近的现象十分普遍,由电磁感应引起的管道交流腐蚀问题日益严重,可能导致油气泄漏与火灾爆炸事故,造成严重的经济损失与人员伤亡。
    方法 针对这一问题,选取常见的35kV、110kV、220kV、500kV共4个电压等级的输电线路为研究对象,利用CDEGS数值仿真软件建立电磁干扰模型,采用单一变量法计算不同工况条件下的“管-线”交流干扰,以交流电流密度30A/m2为判断指标,得到并行区域内高压交流输电线路与埋地管道之间的极限接近距离(安全距离)。
    结果 随着“管-线”并行长度增加,安全距离逐渐增大,当并行长度超过20000m后,安全距离的变化幅度很小;随着土壤电阻率升高,35kV输电线路与管道间的安全距离逐渐减小,110kV及以上电压等级下的安全距离整体呈先增大后减小的规律;在同一电压等级下,单回塔型电路的安全距离均小于双回塔型电路。
    结论 针对实际工程中输电线与管道之间位置关系复杂的情况,通过模型等效的方式进行“化曲为直”,根据管道在路径过程中出现转折点的数目不同提出曲折管道与高压交流输电线等效间距计算方法,并将计算结果与模拟数据进行对比,验证了该模型的有效性。

     

    Abstract:
    Objective The vigorous development of China's economy has stimulated the development of public energy corridors. Owing to the similar preference in choosing sites for overhead power lines and oil-gas pipelines, these two kinds of corridors frequently intersect, run in parallel, or closely approach each other, exacerbating AC corrosion issues in the pipelines attributed to electromagnetic induction. These deficiencies may lead to oil and gas leaks, fires, and explosions, culminating in substantial economic losses and casualties.
    Methods This study focused on transmission lines featuring typical voltage levels of 35 kV, 110 kV, 220 kV, and 500 kV. CDEGS numerical simulation software was utilized to establish an electromagnetic interference model. A single-variable method was used to calculate AC interference between power lines and oil-gas pipelines across various conditions. The ultimate approach distances (safe distances) between HVAC transmission lines and buried pipelines within the parallel zones were determined based on a judgment index of AC current density set at 30 A/m2.
    Results Safe distances expanded as the parallel lengths of power lines and oil-gas pipelines extended. Minor fluctuations occurred in these distances once parallel lengths exceeded 20 000 m. With increasing soil resistivity, safe distances between 35 kV transmission lines and respective pipelines gradually reduced, while those in scenarios with 110 kV and higher voltage levels generally decreased following an initial increase. In scenarios of the same voltage level, safe distances were shorter in single-circuit tower power line setups compared to double-circuit tower configurations.
    Conclusion Considering the intricate positional relationships between transmission lines and pipelines in actual applications, this study adopted the model equivalent method to "convert curves into tangents". It introduced a calculation approach for determining equivalent spacings between zigzag pipelines and corresponding HVAC transmission lines based on the number of turning points in pipeline routes. The effectiveness of this model was verified through a comparison of the calculation results and simulation data.

     

/

返回文章
返回