王宇辰, 吴倩, 刘欢, 康泽天. 管线钢氢相容性测试方法及氢脆防控研究进展[J]. 油气储运, 2023, 42(11): 1251-1260. DOI: 10.6047/j.issn.1000-8241.2023.11.005
引用本文: 王宇辰, 吴倩, 刘欢, 康泽天. 管线钢氢相容性测试方法及氢脆防控研究进展[J]. 油气储运, 2023, 42(11): 1251-1260. DOI: 10.6047/j.issn.1000-8241.2023.11.005
WANG Yuchen, WU Qian, LIU Huan, KANG Zetian. Research progress of hydrogen compatibility testing methods and hydrogen embrittlement prevention measures for pipeline steel[J]. Oil & Gas Storage and Transportation, 2023, 42(11): 1251-1260. DOI: 10.6047/j.issn.1000-8241.2023.11.005
Citation: WANG Yuchen, WU Qian, LIU Huan, KANG Zetian. Research progress of hydrogen compatibility testing methods and hydrogen embrittlement prevention measures for pipeline steel[J]. Oil & Gas Storage and Transportation, 2023, 42(11): 1251-1260. DOI: 10.6047/j.issn.1000-8241.2023.11.005

管线钢氢相容性测试方法及氢脆防控研究进展

Research progress of hydrogen compatibility testing methods and hydrogen embrittlement prevention measures for pipeline steel

  • 摘要: 在研究氢脆发生机理与损伤机制时,常采用慢应变速率拉伸试验、疲劳寿命试验等手段,以力学性能、疲劳寿命等为指标衡量金属的氢脆敏感性。对于典型管线钢材料,其在不足5 MPa的氢气压力下,或在氢气体积分数10%的掺氢天然气环境中,已经在慢应变速率拉伸等试验中表现出明显的韧性下降、裂纹加速扩展等氢损伤特征。为模拟钢在氢气环境中服役,试验中常采用气相充氢与电化学充氢方法,前者能够模拟多种气相对管线钢氢脆的作用,后者能够快速模拟管线钢长时间服役后氢原子的渗透情况。针对氢脆过程及机理总结并分析了3种主要的氢脆防控技术:①调控管线钢材料与加工工艺,优化其微观组织,增加扩散速率,减弱氢原子聚集现象;②引入气体抑制剂,通过竞争吸附的方法减缓氢分子在材料表面的吸附;③增设管道内涂层,使氢气与管线钢基体金属隔离。并基于此提出进一步优化管道氢脆防控技术的建议。

     

    Abstract: Understanding the causes of hydrogen embrittlement and its detrimental effects is essential for ensuring the integrity of pipeline steel. Various testing methods, including slow strain rate and fatigue life testing, are commonly employed to evaluate the susceptibility of metals to embrittlement. Pipeline steel materials often exhibit reduced toughness, accelerated crack propagation, and other hydrogen-related damage during slow strain rate tests conducted at hydrogen pressures below 5 MPa or in environments with a hydrogen volume fraction of 10% in blended natural gas. To simulate the conditions of steel serving in a hydrogen-rich environment, experiments incorporate methods of gas-phase hydrogenation and electrochemical hydrogenation. The former simulates the effects of different gas-phases on hydrogen embrittlement, while the latter replicates long-term hydrogen permeation. This paper provides an overview of the process and mechanisms of hydrogen embrittlement and analyzes three technologies for prevention and control: (1) modification of pipeline steel materials and processing techniques to optimize microstructure, enhance diffusion rates, and mitigate hydrogen atom aggregation; (2) introduction of gas inhibitors to slow hydrogen molecule adsorption on material surfaces through competitive adsorption; and(3) utilization of coatings on the inner pipeline wall to provide a barrier between hydrogen and the steel. Based on these insights, the paper offers suggestions for further optimizing pipeline hydrogen embrittlement control technology.

     

/

返回文章
返回