门嘉铖, 樊玉光, 高琳, 林红先, 张科. EMD-Attention-GRU天然气管网流量组合预测模型[J]. 油气储运, 2023, 42(10): 1193-1200. DOI: 10.6047/j.issn.1000-8241.2023.10.013
引用本文: 门嘉铖, 樊玉光, 高琳, 林红先, 张科. EMD-Attention-GRU天然气管网流量组合预测模型[J]. 油气储运, 2023, 42(10): 1193-1200. DOI: 10.6047/j.issn.1000-8241.2023.10.013
MEN Jiacheng, FAN Yuguang, GAO Lin, LIN Hongxian, ZHANG Ke. Combined flow prediction model for natural gas pipeline network based on EMD-Attention-GRU[J]. Oil & Gas Storage and Transportation, 2023, 42(10): 1193-1200. DOI: 10.6047/j.issn.1000-8241.2023.10.013
Citation: MEN Jiacheng, FAN Yuguang, GAO Lin, LIN Hongxian, ZHANG Ke. Combined flow prediction model for natural gas pipeline network based on EMD-Attention-GRU[J]. Oil & Gas Storage and Transportation, 2023, 42(10): 1193-1200. DOI: 10.6047/j.issn.1000-8241.2023.10.013

EMD-Attention-GRU天然气管网流量组合预测模型

Combined flow prediction model for natural gas pipeline network based on EMD-Attention-GRU

  • 摘要: 为了解决传统的时间序列预测方法在天然气管网流量预测中存在的不足,提出了一种基于经验模态分解(Empirical Mode Decomposition,EMD)、注意力机制(Attention)及门控循环单元(Gated Recurrent Unit,GRU)的组合模型。该模型利用EMD得到的原始天然气管网流量时间序列分量代替原始天然气管网流量数据,再将得到的本征模态函数分量输入GRU神经网络,采用在网络中集成的注意力机制计算不同时刻的注意力概率权重,最后在网络中学习并预测天然气管网流量时间序列。某天然气管网实例验证结果表明:EMD-Attention-GRU组合模型在预测天然气管网流量方面表现出良好的性能,能够捕捉到复杂的非线性关系,相比单一GRU模型、Attention-GRU模型,其预测结果的平均绝对百分比误差指标分别降低6.29%、5.17%。与传统时间序列预测方法相比,EMD-Attention-GRU组合模型能够更好应对天然气管网流量的复杂性及动态特征,具有推广应用价值。

     

    Abstract: In order to overcome the deficiency of the traditional time series prediction method in flow prediction of natural gas pipeline networks, a combined prediction model based on Empirical Mode Decomposition (EMD), Attention and Gated Recurrent Unit (GRU) was proposed. Specifically, the model is to substitute the raw flow data of the natural gas pipeline network with its time series component obtained through Empirical Mode Decomposition (EMD), input the intrinsic mode function component obtained into the GRU neural network, calculate the attention probability weight at different times with the attention integrated into the network, and finally learn in the network and predict the time series of flow in the natural gas pipeline network. The verification results in a natural gas pipeline network show that: the EMD-Attention-GRU combined model demonstrates remarkable performance in flow prediction of natural gas pipeline network, capable of capturing the complex non-linear relationships. Besides, the average absolute percentage error of prediction by the combined model outperforms the single GRU and Attention-GRU models by 6.29% and 5.17%, respectively. Thus, it is indicated that the EMD-Attention-GRU combined model could better address the complexities and dynamic features of flow in natural gas pipeline networks than the conventional time-series prediction methods, with values for promotion and application.

     

/

返回文章
返回