温泉, 石小平, 张利分, 李蕾. 基于改进Tent映射的APSO-LSTM天然气需求量预测模型[J]. 油气储运, 2023, 42(6): 702-712. DOI: 10.6047/j.issn.1000-8241.2023.06.012
引用本文: 温泉, 石小平, 张利分, 李蕾. 基于改进Tent映射的APSO-LSTM天然气需求量预测模型[J]. 油气储运, 2023, 42(6): 702-712. DOI: 10.6047/j.issn.1000-8241.2023.06.012
WEN Quan, SHI Xiaoping, ZHANG Lifen, LI Lei. APSO-LSTM model based on improved Tent mapping for natural gas demand forecasting[J]. Oil & Gas Storage and Transportation, 2023, 42(6): 702-712. DOI: 10.6047/j.issn.1000-8241.2023.06.012
Citation: WEN Quan, SHI Xiaoping, ZHANG Lifen, LI Lei. APSO-LSTM model based on improved Tent mapping for natural gas demand forecasting[J]. Oil & Gas Storage and Transportation, 2023, 42(6): 702-712. DOI: 10.6047/j.issn.1000-8241.2023.06.012

基于改进Tent映射的APSO-LSTM天然气需求量预测模型

APSO-LSTM model based on improved Tent mapping for natural gas demand forecasting

  • 摘要: 为了准确预测多维影响因素条件下天然气需求量的变化,引入自适应惯性权重因子改进粒子群优化算法(Particle Swarm Optimization,PSO),将构建的自适应粒子群优化算法(Adaptive Particle Swarm Optimization,APSO)与改进Tent映射相结合,对长短期记忆(Long Short-Time Memory,LSTM)神经网络模型中的隐含层节点数、学习轮数、初始学习速率进行超参寻优,改变传统LSTM模型凭经验设定超参数的不足。基于1999—2020年的10项强相关性影响因素细分数据进行算例验证,并对2021—2030年中国的天然气需求量进行预测。结果表明:改进Tent-APSOLSTM模型组合参数寻优效果最佳,可以更好地适用于中国天然气中短期需求量预测工作。

     

    Abstract: In order to accurately forecast the change of natural gas demand under the condition of multi-dimensional influencing factors, the adaptive inertia weight factor was introduced to improve the Particle Swarm Optimization (PSO) algorithm. Then, by combining the constructed Adaptive Particle Swarm Optimization (APSO) algorithm with the improved Tent mapping, hyper-parameter optimization was performed to the hidden layer nodes, the learning rounds and the initial learning rate in the Long Short-Time Memory Network (LSTM) model, so as to change the deficiency of the traditional LSTM model of setting the hyper-parameters empirically. Moreover, the calculation example was verified based on the subdivided data of 10 highly correlated influencing factors from 1999 to 2020, and the natural gas demand from 2021 to 2030 was forecasted. The results show that the improved Tent-APSO-LSTM model has the best optimization effect on the parameters and could be better applied to the gas demand forecasting in short and medium term.

     

/

返回文章
返回