Loading [MathJax]/extensions/TeX/boldsymbol.js

隧道内埋地油气管道巡检安全风险评价模型

司明理, 曾发镔, 郑登锋

司明理, 曾发镔, 郑登锋. 隧道内埋地油气管道巡检安全风险评价模型[J]. 油气储运, 2022, 41(10): 1159-1167. DOI: 10.6047/j.issn.1000-8241.2022.10.005
引用本文: 司明理, 曾发镔, 郑登锋. 隧道内埋地油气管道巡检安全风险评价模型[J]. 油气储运, 2022, 41(10): 1159-1167. DOI: 10.6047/j.issn.1000-8241.2022.10.005
SI Mingli, ZENG Fabin, ZHENG Dengfeng. Safety risk assessment model for patrol inspection of buried oil and gas pipelines in tunnels[J]. Oil & Gas Storage and Transportation, 2022, 41(10): 1159-1167. DOI: 10.6047/j.issn.1000-8241.2022.10.005
Citation: SI Mingli, ZENG Fabin, ZHENG Dengfeng. Safety risk assessment model for patrol inspection of buried oil and gas pipelines in tunnels[J]. Oil & Gas Storage and Transportation, 2022, 41(10): 1159-1167. DOI: 10.6047/j.issn.1000-8241.2022.10.005

隧道内埋地油气管道巡检安全风险评价模型

基金项目: 

中国石油西部管道分公司科技攻关项目“油气管道安全风险数据库建设” GDXB08-2019-018

详细信息
    作者简介:

    司明理,男,1977年生,高级工程师,2007年毕业于新疆农业大学农业机械化工程专业,现主要从事应急救援指挥专业方向的研究工作。地址:新疆乌鲁木齐市新市区湖州路1799号,830000。电话:13639926067。Email:454180769@qq.com

    通讯作者:

    曾发镔,男,1996年生,在读博士生,2021年毕业于北京科技大学安全科学与工程专业,现主要从事安全科学与灾害防治专业方向的研究工作。地址:北京市海淀区学院路30号,100083。电话:18801335998。Email:d202110062@xs.ustb.edu.cn

  • 中图分类号: TE88

Safety risk assessment model for patrol inspection of buried oil and gas pipelines in tunnels

  • 摘要: 为有效评价隧道内埋地长输管道巡检的风险等级,针对管道巡检作业随机性、模糊性的特点,引入云理论与组合赋权方法,构建了隧道内埋地油气管道巡检安全风险评价模型。以穿越某隧道群的国家管网集团伊犁果子沟段管道为例,基于危险源理论,选取隧道因素、路网因素、环境因素、人的行为、物的状态以及管理水平6个方面29项风险因素作为评价指标;基于欧式距离组合,运用改进G2法与CRITIC(Criteria Importance Though Intercrieria Correlation)法确定各指标的权重系数;依据各指标的分级标准,利用Matlab软件计算云模型的特征参数并生成云图;通过正向云发生器,确定不同风险等级下的指标隶属度、综合隶属度。研究结果表明:基于欧式距离的组合赋权方法既可以降低决策者的主观不确定性,又可以消除数据间的客观误差,评价结果与工程实评结果吻合较好。构建的评价模型具有较好的科学性与适用性,可为管道巡检风险评价提供新思路。
    Abstract: The patrol inspection of oil and gas pipelines has the characteristics of randomness and fuzziness. In order to effectively assess the risk level of patrol inspection of buried long-distance oil and gas pipelines in tunnels, a safety risk assessment model for patrol inspection of pipelines was constructed by introducing the cloud theory and combination weighting method. Herein, study was performed on Ili?Guozigou Pipeline of PipeChina in a tunnel group. Specifically, 29 risk factors in 6 aspects, i.e., tunnel, road network, environment, human behavior, state of object and management level, were used as the assessment indicators based on the hazard theory. Meanwhile, the weight coefficients of each indicator were determined using the improved G2 method and CRITIC (Criteria Importance Though Intercrieria Correlation) method based on the combination of Euclidean distance. The characteristic parameters of the cloud model were calculated and the cloud image was generated with Matlab software according to the classification standards of each indicator. Besides, the indicator membership degree and the comprehensive membership degree under different risk levels were determined by the forward cloud generator. The results show that the combination weighting technique based on Euclidean distance can not only reduce the subjective uncertainty of decision-makers, but also eliminate the objective errors between data. In addition, the assessment results are in good agreement with the field engineering evaluation results. The assessment model constructed has good scientificity and applicability, and is capable of providing new ideas for the risk assessment of patrol inspection of the buried long-distance oil and gas pipelines in tunnels.
  • 随着中国能源结构的逐步转型,石油与天然气的需求量与日俱增,油气管道因其运输量大、距离长、分布广的特点,已成为重要的资源运输方式。但油气长输管道建设的规模化、网络化发展,使得管道敷设常常需穿越高原、隧道、戈壁、沙漠等恶劣的地形地貌,对于人工巡护作业的安全防护提出了更高的要求。为保障能源的有效输送与巡检人员的安全,国内外在油气管道巡检安全风险管理及评价方面进行了大量的研究。曹闯明[1]认为引进智能视频巡检监控技术,能有效识别并自动追踪巡检风险。刘亮等[2]提出基于完整性管理方法,建立管道巡检闭环系统以实现关键风险点与轨迹匹配。Abubakirov等[3]提出基于动态贝叶斯网络与监测监控数据,评价埋地输油管道的最佳巡检间距。Kraidi等[4]分析了油气管道建设与运营存在的风险因素,并开发了整体风险管理模型。蒋仲安等[5]基于危险源理论,分析了油气管道安全风险演化流程。付明福等[6]为了评价管道运营作业的主要风险和实现管道作业风险管理,提出了油气管长输管道作业分级定量评价方法。但隧道内埋地油气管道具有隧道条件复杂、巡检环境封闭、巡检盲区多等特点,巡检作业的风险因素具有多层次、多目标的特点,风险指标的选取、权重的确定尚无统一的标准,风险评价具有主观性、模糊性。云模型能够将该评价过程中定性概念向定量的数值区间相互转换,可较好地解决巡检作业时安全风险的模糊性与不确定性。为进一步加强隧道内埋地油气管道巡检作业风险等级预测、风险因素管控,引入云模型理论与组合赋权方法,结合管道巡检作业的实际情况,构建了隧道内埋地油气管道巡检安全风险评价模型,以穿越某隧道群的国家管网集团伊犁果子沟段管道为例,对新建评价模型科学性、可操作性进行校验,以期提升隧道内埋地油气管道巡检作业效率和保障巡检作业人员的健康安全,为管道巡检风险评价提供参考。

    1993年,李德毅等[7]在模糊数学与随机函数的理论基础上提出了云模型算法,具有将评价过程中不确定、主观的定性指标通过映射关系实现确定的、客观的定量数值转换的优点,已广泛应用于生态环境、灾害风险评价等领域[8-9]

    长输油气管道埋地距离长、沿线环境复杂,使得巡检作业安全风险评价指标多以定性的形式表示,但通过云模型理论的期望Ex、熵En以及超熵He这3个特征参数可以表达定性指标的定量特征[10],能够有效降低风险评价过程中的模糊性与不确定性,可以更好地符合实际评价的本质。以正态分布与高斯隶属函数为基础的正态云模型具有良好的适用性,在该模型的特征参数分布图[11]中,Ex表示若干云滴所在论域的数学期望,即定性指标的中心值;En反映了指标的不确定性度量,即云层的宽度;He表征了判别信息的离散程度与随机性大小,即云层的厚度。

    云模型发生器是云的具体实现方式,由定性概念到定量数值的计算过程称为“正向云发生器”,即在已知ExEnHe的情况下生成所需数量的云滴;反之,称为“逆向云发生器”。对于隧道内埋地油气管道巡检安全风险综合评价过程,需要尽可能地量化评价过程、分析评价数据,因此选用“正向云发生器”。其计算步骤为:①生成以En为期望、以He2为方差的高斯随机数En'~(EnHe2);②生成以Ex为期望、以En'为方差的数值X~(ExEn');③将数值X定义为一个云滴,表示定性概念的一次具体量化数据,利用式(1)计算隶属度值μiX);④形成区间为[XμiX)]的云滴;⑤重复步骤①~步骤④,即可产生Q个云滴。

    μi(X)=exp[(XEx)22En2] (1)

    指标权重不仅反映隧道内埋地管道巡检作业过程中的各级风险因素对目标层的重要程度,也是云模型不断传递、跃迁的“桥梁”。传统的权重系数的计算方法分为主观赋权法与客观赋权法[12],其中主观赋权法的实质是利用专家的知识、经验、智慧确定指标间的重要性,而客观赋权法则是通过指标数据信息与数理推导确定指标的数据信息与差别。因此,为使隧道内埋地油气管道巡检安全风险评价结果更加符合现场实际工况,提出基于欧式距离的组合赋权法确定各层级评价指标的权重系数,以弥补主观赋权的随机性,并修正客观赋权的信息误差。

    假定待评价的隧道内埋地油气管道巡检线路为A,按照评价的不同危险源属性,将影响巡检作业的风险因素划分为若干M个相互独立的子集(二级评价指标)I={I1I2,…,Ii,…,IM}(i=1,2,…,M)。每个评价内容子集IiN个三级评价指标,即有Ii={Ii1Ii2,…,Iij,…,IiN}(j=1,2,…,N)。

    G2赋权法是面向实际应用的映射赋权法[13],能够充分反映专家学者的风险意识,弥补了传统主观赋权中数据的不对称、缺失而未能给出精确数值的不足。为减少专家个人经验与偏好对赋权过程的主观随意性的影响,利用指标基尼系数替代传统的指标重要性比值。

    (1)对各风险指标IiN进行样本数据排序,计算Iij的基尼系数Gij

    Gij=1k1Yij(kp=2p1q=1|yjpyjq|) (2)

    式中:k为第j个指标的样本总数;yjpyjq分别为第j个指标的第pq个样本数据;Yij为第j个指标的样本数据总和。

    (2)优选出同一层级影响因素最低的指标Imin,计算第j个指标Iij关于Imin的相对重要程度Rij

    Rij=GijGmin (3)

    式中:Gmin为指标Imin的基尼系数。

    (3)计算指标的主观权重系数wij

    wij=RijNj=1Rij (4)

    CRITIC(Criteria Importance Though Intercrieria Correlation)法是Diakoulaki提出的基于指标内的变异性与指标间的冲突性的客观赋权法,能够表征指标的信息量与指标因素间的相关性程度[14-15]

    利用Z-score方法对样本数据构成原始矩阵Y=(yaijk×Na为样本数据序号,yaij为各项指标的样本数据)进行标准化,得到标准化矩阵Y*:

    \boldsymbol{Y}^*=\left(\frac{y_{a i j}-\overline{y_{i j}}}{S_{i j}}\right)_{k \times N} (5)
    \overline{y_{i j}}=\frac{1}{k} \sum\limits_a^k y_{i j} (6)
    S_{i j}=\sqrt{\frac{1}{k} \sum\limits_a^k\left(y_{i j}-\overline{y_{i j}}\right)^2} (7)

    式中:\overline{y_{i j}}Sij分别为第j个风险评价指标的均值、标准差。

    根据上述公式,计算风险评价指标内的变异性系数Vij

    V_{i j}=\frac{S_{i j}}{\overline{y_{i j}}} (8)

    再计算风险指标间的冲突性系数Bij

    B_{i j}=\sum\limits_{j=1}^N\left(1-r_{i j}\right) (9)

    式中:rij为第i个风险指标与第j个风险指标之间的相关性系数。

    于是,可得到第j个风险指标的信息量与指标因素间的相关性程度Hij

    H_{i j}=V_{i j} B_{i j} (10)

    由此,计算得到风险指标的客观权重系数vij

    v_{i j}=\frac{H_{i j}}{\sum\limits_{j=1}^N H_{i j}} (11)

    为既能反映决策者的主观意见与偏好,又能体现客观数据的基本规律,使主观、客观权重之间的差异程度与其分配系数相一致,采用距离描述赋权方法间的偏差,从而将两种权重结合起来[16]。由此,定义两种权重间的欧式距离函数dwivi)为:

    d\left(w_i, v_i\right)=\sqrt{\frac{1}{2} \sum\limits_{i=1}^N\left(w_i-v_i\right)^2} (12)

    用线性加权组合方式确定组合权重Wi,则其表达式为:

    W_i=\alpha w_i+\beta v_i (13)

    式中:αβ分别为wivi的分配系数。

    为使分配系数与主客观权重的差异程度相同,则有:

    d\left(w_i, v_i\right)^2=(\alpha-\beta)^2 (14)
    \alpha+\beta=1 (15)

    根据式(12)、式(14)、式(15)计算主客观权重间的分配系数αβ,再由式(13)可计算隧道内埋地油气管道巡检安全风险的组合权重。

    根据能量意外释放理论对风险事故发展的不同危害及影响,将隧道内埋地油气管道巡检作业中危险源分为固有危险源与可控危险源[5]。固有危险源是巡检过程中不为人的意志而转移的事故隐患,主要包括隧道因素、路网因素、环境因素;可控危险源则是可能导致能量意外释放或安全屏障失效的各种可控的不安全因素,主要包括人的行为、物的状态以及管理水平。在管道巡检的实际过程中,安全风险主要具有以下的特点:①事故后果严重性,一方面人、车构成的人机动态系统的失控将造成人员伤亡,另一方面隧道内氧含量不足或有毒有害气体的积聚造成的受限空间亦带来巨大风险;②巡检作业系统的动态性,巡检作业离不开各种检测、监测、预警设备的正常运转;③巡检作业环境的复杂性,巡检过程中既有雪崩、暴雨、滑坡、泥石流等自然灾害的影响,也有隧道照明环境、空气质量等外部环境因素的影响。

    以JTG D70-2—2014《公路隧道设计规范》和GB 32167—2015《油气输送管道完整性管理规范》为基础,现场调研了西部管道公司所辖霍尔果斯、鄯善、塔里木、兰州、玉门等10余个典型作业区管道巡检的实际情况,并对相关文献资料[13, 17-18]进行梳理,结合管道巡检作业安全风险影响因素,运用德尔菲法构建了隧道内埋地油气管道巡检安全风险评价指标体系(图 1),其包括6个二级指标、29个三级指标。

    图  1  隧道内埋地油气管道巡检安全风险评价指标体系框图

    管道巡检安全风险指标等级的合理划分将直接影响风险等级结果的科学性、准确性。为了减少巡检过程中风险评价的模糊性、不确定性,结合上述标准、文献资料,对隧道内埋地油气管道巡检安全风险评价指标进行定性与定量分级(表 1),其中I12I13I14I21I43I44I55I64采用半定量化的方法进行分级取值,即利用定性语言将其分为5个评价等级,根据油气管道安全管理人员及行业专家经验确定该定性量化指标的级别;对于其余指标,则通过实测值对其进行赋值分级。将隧道内埋地油气管道巡检安全风险的综合评价等级划分为Ⅰ~Ⅴ共5个级别,分别表示评价低风险、较低风险、中风险、较高风险、高风险。

    表  1  管道巡检安全风险评价指标评价准则表
    二级指标 三级指标 评价指标 不同风险等级下的评价准则及取值范围
    低风险 较低风险 中等风险 较高风险 高风险
    I1 I11 隧道围岩单轴饱和抗压强度σ σ>60 MPa 60 MPa≥σ>30 MPa 30 MPa≥σ>20 MPa 20 MPa≥σ>5 MPa σ≤5 MPa
    I12 顶底板变形程度 结构完整(5) 结构较完整(4) 结构微损(3) 结构破损(2) 结构失效(1)
    I13 衬砌结构稳定程度 结构稳定(5) 结构较稳定(4) 结构微损(3) 结构破损(2) 结构失效(1)
    I14 载荷变化程度 载荷稳定(5) 载荷较稳定(4) 载荷微变(3) 载荷破坏(2) 载荷失效(1)
    I2 I21 隧道前方坡度θ1 θ1>1° 1°≥θ1>0° 0°≥θ1>-1° -1°≥θ1>-2° θ1≤-2°
    I22 隧道视距范围s s>600 m 600 m≥s>300 m 300 m≥s>210 m 210 m≥s>165 m s≤165 m
    I23 隧道直线长度L L≤1.5 m 1.5 m<L≤2 m 2 m<L≤2.5 m 2.5 m<L≤3 m L>3 m
    I24 隧道下坡坡度θ2 θ2>0° 0°≥θ2>-1° -1°≥θ2>-2° -2°≥θ2>-3° θ2≤-3°
    I25 路面摩擦阻力系数f f>0.5 0.5≥f>0.45 0.45≥f>0.4 0.4≥f>0.35 f≤0.35
    I26 路面车道宽度D D>3.75 m 3.75 m≥D>3.5 m 3.5 m≥D>3.25 m 3.25 m≥D>3 m D≤3 m
    I27 串联隧道群间距l l>3 m 3 m≥l>2.6 m 2.6 m≥l>1.9 m 1.9 m≥l>1.3 m l≤1.3 m
    I3 I31 自然灾害强度与频数 常年不发生(5) 较少发生(4) 偶尔发生(3) 多次发生(2) 频繁发生(1)
    I32 隧道内平均照明亮度ϕ ϕ>180 cd/m2 180 cd/m2ϕ>135 cd/m2 135 cd/m2ϕ>95 cd/m2 95 cd/m2ϕ>54 cd/m2 ϕ≤54 cd/m2
    I33 隧道内烟雾的浓度c1 c1>5×10-3 m-1 5×10-3 m-1c1>6.5×10-3 m-1 6.5×10-3 m-1c1>7×10-3 m-1 7×10-3 m-1c1>7.5×10-3 m-1 c1>7.5× 10-3 m-1
    I34 隧道内氧气质量分数c2 c2>23.20% 23.20%≥c2>21.55% 21.55%≥c2>16.58% 16.58%≥c2>13.26% c2≤13.26%
    I4 I41 巡检安全教育培训学时t1 t1>96 h 96 h≥t1>48 h 48 h≥t1>24 h 24 h≥t1>12 h t1≤12 h
    I42 巡检人员5年以上工作经验人员占比P1 P1>70% 70%≥P1>50% 50%≥P1>30% 30%≥P1>10% P1≤10%
    I43 巡检人员巡检能力 能力过硬(5) 能力较强(4) 能力达标(3) 能力一般(2) 能力较差(1)
    I44 巡检人员身心素质 素质过硬(5) 素质较强(4) 素质达标(3) 素质一般(2) 素质较差(1)
    I5 I51 管内介质H2S含量c3 c3≤0.01 g/m3 0.01 g/m3c3≤0.02 g/m3 0.02 g/m3c3≤0.1 g/m3 0.1 g/m3c3≤0.35 g/m3 c3>0.35 g/m3
    I52 管道在役时间t2 t2≤3 a 3 a<t2≤5 a 5 a<t2≤8 a 8 a<t2≤10 a t2>10 a
    I53 巡检车速v v≤10 m/s 10 m/s<v≤20 m/s 20 m/s<v≤40 m/s 40 m/s<v≤60 m/s v>60 m/s
    I54 检测设备维检修周期τ τ≤1月/次 1月/次<τ≤5月/次 5月/次<τ≤8月/次 8月/次<τ≤12月/次 τ>12月/次
    I55 监测报警系统灵敏度 灵敏度高(5) 灵敏度较高(4) 灵敏度一般(3) 灵敏度较差(2) 灵敏度差(1)
    I6 I61 实际规章制度条数在总规章制度条数中占比P2 P2>90% 90%≥P2>80% 80%≥P2>70% 70%≥P2>60% P2≤60%
    I62 实际落实规程条数在总规章制度条数中占比P3 P3>90% 90%≥P3>80% 80%≥P3>70% 70%≥P3>60% P3≤60%
    I63 实际应急预案条数在总规章制度条数中占比P4 P4>90% 90%≥P4>80% 80%≥P4>70% 70%≥P4>60% P4≤60%
    I64 应急救援设备便捷程度 优(5) 良(4) 中等(3) 合格(2) 差(1)
    I65 应急演练频次η η>36次/a 36次/a≥η>24次/a 24次/a≥η>12次/a 24次/a≥η>6次/a η≤6次/a
    下载: 导出CSV 
    | 显示表格

    管道巡检作业安全风险评价云模型特征参数(ExEnHe)计算式11为:

    E_{\mathrm{x}}=\frac{C_{\min }+C_{\max }}{2} (16)
    E_{\mathrm{n}}=\frac{C_{\max }-C_{\min }}{6} (17)
    H_{\mathrm{e}}=\xi (18)

    式中:CmaxCmin分别为风险指标边界的最大值、最小值;He取经验值ξ,其为En的0.15倍[19]

    对于单一边界情况,如[Cmax,+∞)或(-∞,Cmin],则由风险指标边界CmaxCmin确定缺省边界的参数。

    利用Matlab软件与正向云发生器生成足量的云滴,进而实现安全风险评价指标云图的生成。

    根据上述组合赋权的计算流程,结合隧道内埋地油气管道巡检安全风险综合评价指标体系,分别计算改进G2主观权重、CRITIC客观权重,并依据式(12)~式(15)可计算出各层级指标的组合权重W={W1W2,…,WM}。

    根据表 1中的管道巡检安全风险评价准则,将式(1)、式(19)~式(20)相结合,可计算得到油气管道巡检安全风险分级评价结果:

    U_j=\sum\limits_{j=1}^N W_j \mu_A(X) (19)
    T_i=\sum\limits_{j=1}^N W_i U_j (20)

    式中:Uj为待评价对象的第j个分量;μAX)为待评价隧道巡检管段A的隶属度值;Wj为第j个三级指标的组合权重值;Wi为第i个二级指标的组合权重值;Ti为待评价隧道巡检管段A的综合隶属度。

    以穿越某隧道群的国家管网集团伊犁果子沟段管道为例,应用隧道内埋地油气管道安全风险组合赋权云模型对其1#通车隧道进行风险评价。该隧道位于天山西山脉,属于高海拔严寒地区,地形呈波状起伏,沟壑曲折,道路纵坡较大,埋地管道为西二线与西三线并行敷设,其并行间距5~20 m,局部段同沟敷设。冬季的厚堆积雪给管道巡检作业带来了巨大的事故隐患,因此对该段进行巡检风险等级评价十分必要。现场调研与设计资料显示,1#通车隧道衬砌结构稳定,隧道的变形程度与载荷变化均呈现较稳定状态,但受恶劣环境的影响,埋地油气管道多次发生自然灾害,与此同时,该管段具有灵敏、完整的监测报警系统。对于表 1中的定量评价指标,通过隧道的施工方案、埋地油气管道的敷设方案以及现场仪器的检测获得相关的评价值(表 2)。

    表  2  1#通车隧道内各油气管段巡检安全风险指标评价值表
    隧道编号 安全风险评价指标值
    I11 I12 I13 I14 I21 I22 I23 I24 I25 I26 I27 I31 I32 I33 I34
    1# 40 4 5 4 5.28 450 3.08 0 0.2 4.4 2.5 2 203 6.2 19.81
    隧道编号 安全风险评价指标值
    I41 I42 I43 I44 I51 I52 I53 I54 I55 I61 I62 I63 I64 I65
    1# 48 25 4 4 0.01 4 25 2 5 88 91 89 4 2
    下载: 导出CSV 
    | 显示表格

    根据式(16)~式(20),并结合表 1中的各三级指标分级标准,计算该隧道内埋地油气管道巡检作业安全风险评价指标的各特征参数(表 3)。同时,利用Matlab2014a软件,结合式(1)的正向云发生器(Q=1 000),可获得各指标的云图(图 2)。

    表  3  1#通车隧道内各油气管段巡检作业安全风险评价指标的特征参数计算结果表
    指标序号 不同风险等级下特征参数(ExEnHe)计算结果
    低风险 较低风险 中等风险 较高风险 高风险
    I11 (60,5,0.333) (45,5,0.333) (25,1.666,0.111) (12.5,1.666,0.111) (2.5,0.833,0.056)
    I12 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I13 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I14 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I21 (1,0.166,0.011) (0.5,0.166,0.011) (-0.5,0.166,0.011) (-1.5,0.166,0.011) (-2,0.333,0.022)
    I22 (600,50,3.333) (450,50,3.333) (255,15,1) (187.5,7.5,0.5) (82.5,27.5,1.833)
    I23 (0.75,0.25,0.017) (1.75,0.083,0.006) (2.25,0.083,0.006) (2.75,0.083,0.006) (3,0.083,0.006)
    I24 (0,0.166,0.011) (-0.5,0.166,0.011) (-1.5,0.166,0.011) (-2.5,0.167,0.011) (-3,0.5,0.033)
    I25 (0.5,0.008,0.001) (0.475,0.008,0.001) (0.425,0.008,0.001) (0.375,0.008,0.001) (0.175,0.058,0.004)
    I26 (3.75,0.042,0.003) (3.625,0.042,0.003) (3.375,0.042,0.003) (3.25,0.083,0.006) (1.5,0.5,0.033)
    I27 (3,0.067,0.004) (2.8,0.067,0.004) (2.25,0.117,0.008) (1.6,0.1,0.007) (0.65,0.217,0.014)
    I31 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I32 (180,7.5,0.5) (157.5,7.5,0.5) (115,6.666,0.444) (74.5,6.833,0.456) (27,9,0.6)
    I33 (2.5,0.833,0.056) (5.75,0.25,0.017) (6.75,0.083,0.006) (7.25,0.083,0.006) (7.5,0.083,0.006)
    I34 (23.2,0.275,0.018) (22.375,0.275,0.018) (19.065,0.828,0.055) (14.92,0.553,0.037) (6.63,2.21,0.147)
    I41 (96,8,0.533) (72,8,0.533) (36,4,0.267) (18,2,0.133) (6,2,0.133)
    I42 (70,3.333,0.222) (60,3.333,0.222) (40,3.333,0.222) (20,3.333,0.222) (5,1.667,0.111)
    I43 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I44 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I51 (0.01,0.003,0) (0.015,0.002,0) (0.06,0.013,0.001) (0.225,0.042,0.003) (0.35,0.042,0.003)
    I52 (1.5,0.5,0.033) (4,0.333,0.022) (6.5,0.5,0.033) (9,0.333,0.022) (10,0.333,0.022)
    I53 (5,1.666,0.111) (15,1.666,0.111) (30,3.333,0.222) (50,3.333,0.222) (60,3.333,0.222)
    I54 (0.5,0.167,0.011) (3,0.666,0.044) (6.5,0.5,0.033) (10,0.666,0.044) (12,0.666,0.044)
    I55 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I61 (90,1.67,0.111) (85,1.67,0.111) (75,1.67,0.111) (65,1.67,0.111) (30,10,0.667)
    I62 (90,1.67,0.111) (85,1.67,0.111) (75,1.67,0.111) (65,1.67,0.111) (30,10,0.667)
    I63 (90,1.67,0.111) (85,1.67,0.111) (75,1.67,0.111) (65,1.67,0.111) (30,10,0.667)
    I64 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I65 (36,2,0.133) (30,2,0.133) (18,2,0.133) (9,1,0.067) (6,1,0.067)
    下载: 导出CSV 
    | 显示表格
    图  2  1#通车隧道内各油气管段巡检隧道环境因素云模型图

    按照上述改进G2法与CRITIC法权重的计算步骤,分别计算1#通车隧道内各油气管段巡检作业安全风险评价指标的主、客观权重。由式(12)~式(15)可计算组合权重分配系数α=0.503 2、β=0.496 8,并得到各层指标的权重系数(表 4)。

    表  4  1#通车隧道内各油气管段巡检安全风险评价指标因素权重计算结果表
    指标序号 G2 CRITIC 组合权重 指标序号 G2 CRITIC 组合权重
    I11 0.019 0.026 0.022 I41 0.022 0.029 0.025
    I12 0.016 0.025 0.020 I42 0.022 0.047 0.034
    I13 0.030 0.035 0.032 I43 0.069 0.029 0.050
    I14 0.013 0.024 0.018 I44 0.042 0.041 0.042
    I21 0.025 0.029 0.027 I51 0.035 0.039 0.037
    I22 0.050 0.042 0.046 I52 0.019 0.026 0.023
    I23 0.038 0.040 0.039 I53 0.028 0.034 0.031
    I24 0.042 0.041 0.041 I54 0.012 0.020 0.016
    I25 0.039 0.040 0.039 I55 0.035 0.039 0.037
    I26 0.023 0.029 0.026 I61 0.017 0.026 0.021
    I27 0.030 0.036 0.033 I62 0.032 0.039 0.035
    I31 0.053 0.042 0.048 I63 0.020 0.026 0.023
    I32 0.025 0.030 0.027 I64 0.022 0.027 0.024
    I33 0.082 0.048 0.066 I65 0.045 0.041 0.043
    I34 0.096 0.051 0.075
    下载: 导出CSV 
    | 显示表格

    利用Matlab2014a软件,将1#通车隧道内油气管道巡检风险的定性实评与定量实测数据代入新建的正态云模型中进行计算,得到各个风险指标关于不同风险等级的隶属度;再利用表 4的组合权重,并结合式(19)~式(20)计算,可得油气管道巡检安全风险分级评价结果(表 5)。由此,得出1#通车隧道内各油气管段巡检Ⅰ~Ⅴ级风险对应的云模型综合隶属度分别为:0.034 2、0.043 9、0.013 3、0.001 9、0.014 9。

    表  5  1#通车隧道内各油气管段巡检安全风险综合隶属度计算结果表
    二级指标序号 组合权重值 云模型综合隶属度
    低风险 较低风险 中等风险 较高风险 高风险
    I1 0.092 0.002 8 0.056 6 0.000 0 0.000 0 0.000 0
    I2 0.251 0.068 8 0.047 1 0.003 7 0.000 1 0.059 4
    I3 0.216 0.005 2 0.046 1 0.049 8 0.000 9 0.000 0
    I4 0.151 0.008 2 0.061 6 0.000 5 0.011 0 0.000 0
    I5 0.144 0.037 7 0.030 1 0.010 0 0.000 0 0.000 0
    I6 0.146 0.060 7 0.022 6 0.000 5 0.000 5 0.000 1
    下载: 导出CSV 
    | 显示表格

    可见,1#通车隧道内油气管道巡检作业云模型综合隶属度为:TTTTT,表明该管道巡检作业风险等级在低风险与较低风险之间,说明该巡检作业存在一定的事故隐患。根据风险指标的组合权重可见,影响隧道内埋地油气管道安全风险的主要方面为环境因素、人为因素以及路网因素。依据现场调研资料显示,该隧道内氧含量较低、烟雾浓度高、自然灾害频发以及巡检人员专业素质较低等,这些因素对管道的巡检安全将造成较大的影响,因此在巡检作业安全管理方面,应着重加强对上述过程的风险管控。

    (1)隧道内埋地油气管道巡检安全风险的影响因素较多,综合考虑了隧道因素、路网因素、环境因素、人的行为、物的状态以及管理水平等6方面共29种主要安全风险影响因素,建立评价指标体系,并将安全风险等级划分为低风险、较低风险、中风险、较高风险、高风险5个级别。

    (2)基于欧式距离将改进的主观G2法与客观的CRITIC法进行线性耦合,既弥补了主观赋权的随机性又修正了客观赋权的信息误差,确定了管道安全巡检管控的主要因素为隧道内氧气含量、烟雾含量、自然灾害强度以及巡检人员的专业能力等。

    (3)针对隧道内埋地油气管道巡检安全风险评价过程指标因素不确定性与模糊性,应用组合赋权方法与云模型理论,构建了油气管道巡检安全风险评价云模型,可较好地将安全风险影响因素中定性指标以定量的方式呈现,评价结果与实际结果相吻合,为管道巡检风险评价提供了借鉴。

  • 图  1   隧道内埋地油气管道巡检安全风险评价指标体系框图

    图  2   1#通车隧道内各油气管段巡检隧道环境因素云模型图

    表  1   管道巡检安全风险评价指标评价准则表

    二级指标 三级指标 评价指标 不同风险等级下的评价准则及取值范围
    低风险 较低风险 中等风险 较高风险 高风险
    I1 I11 隧道围岩单轴饱和抗压强度σ σ>60 MPa 60 MPa≥σ>30 MPa 30 MPa≥σ>20 MPa 20 MPa≥σ>5 MPa σ≤5 MPa
    I12 顶底板变形程度 结构完整(5) 结构较完整(4) 结构微损(3) 结构破损(2) 结构失效(1)
    I13 衬砌结构稳定程度 结构稳定(5) 结构较稳定(4) 结构微损(3) 结构破损(2) 结构失效(1)
    I14 载荷变化程度 载荷稳定(5) 载荷较稳定(4) 载荷微变(3) 载荷破坏(2) 载荷失效(1)
    I2 I21 隧道前方坡度θ1 θ1>1° 1°≥θ1>0° 0°≥θ1>-1° -1°≥θ1>-2° θ1≤-2°
    I22 隧道视距范围s s>600 m 600 m≥s>300 m 300 m≥s>210 m 210 m≥s>165 m s≤165 m
    I23 隧道直线长度L L≤1.5 m 1.5 m<L≤2 m 2 m<L≤2.5 m 2.5 m<L≤3 m L>3 m
    I24 隧道下坡坡度θ2 θ2>0° 0°≥θ2>-1° -1°≥θ2>-2° -2°≥θ2>-3° θ2≤-3°
    I25 路面摩擦阻力系数f f>0.5 0.5≥f>0.45 0.45≥f>0.4 0.4≥f>0.35 f≤0.35
    I26 路面车道宽度D D>3.75 m 3.75 m≥D>3.5 m 3.5 m≥D>3.25 m 3.25 m≥D>3 m D≤3 m
    I27 串联隧道群间距l l>3 m 3 m≥l>2.6 m 2.6 m≥l>1.9 m 1.9 m≥l>1.3 m l≤1.3 m
    I3 I31 自然灾害强度与频数 常年不发生(5) 较少发生(4) 偶尔发生(3) 多次发生(2) 频繁发生(1)
    I32 隧道内平均照明亮度ϕ ϕ>180 cd/m2 180 cd/m2ϕ>135 cd/m2 135 cd/m2ϕ>95 cd/m2 95 cd/m2ϕ>54 cd/m2 ϕ≤54 cd/m2
    I33 隧道内烟雾的浓度c1 c1>5×10-3 m-1 5×10-3 m-1c1>6.5×10-3 m-1 6.5×10-3 m-1c1>7×10-3 m-1 7×10-3 m-1c1>7.5×10-3 m-1 c1>7.5× 10-3 m-1
    I34 隧道内氧气质量分数c2 c2>23.20% 23.20%≥c2>21.55% 21.55%≥c2>16.58% 16.58%≥c2>13.26% c2≤13.26%
    I4 I41 巡检安全教育培训学时t1 t1>96 h 96 h≥t1>48 h 48 h≥t1>24 h 24 h≥t1>12 h t1≤12 h
    I42 巡检人员5年以上工作经验人员占比P1 P1>70% 70%≥P1>50% 50%≥P1>30% 30%≥P1>10% P1≤10%
    I43 巡检人员巡检能力 能力过硬(5) 能力较强(4) 能力达标(3) 能力一般(2) 能力较差(1)
    I44 巡检人员身心素质 素质过硬(5) 素质较强(4) 素质达标(3) 素质一般(2) 素质较差(1)
    I5 I51 管内介质H2S含量c3 c3≤0.01 g/m3 0.01 g/m3c3≤0.02 g/m3 0.02 g/m3c3≤0.1 g/m3 0.1 g/m3c3≤0.35 g/m3 c3>0.35 g/m3
    I52 管道在役时间t2 t2≤3 a 3 a<t2≤5 a 5 a<t2≤8 a 8 a<t2≤10 a t2>10 a
    I53 巡检车速v v≤10 m/s 10 m/s<v≤20 m/s 20 m/s<v≤40 m/s 40 m/s<v≤60 m/s v>60 m/s
    I54 检测设备维检修周期τ τ≤1月/次 1月/次<τ≤5月/次 5月/次<τ≤8月/次 8月/次<τ≤12月/次 τ>12月/次
    I55 监测报警系统灵敏度 灵敏度高(5) 灵敏度较高(4) 灵敏度一般(3) 灵敏度较差(2) 灵敏度差(1)
    I6 I61 实际规章制度条数在总规章制度条数中占比P2 P2>90% 90%≥P2>80% 80%≥P2>70% 70%≥P2>60% P2≤60%
    I62 实际落实规程条数在总规章制度条数中占比P3 P3>90% 90%≥P3>80% 80%≥P3>70% 70%≥P3>60% P3≤60%
    I63 实际应急预案条数在总规章制度条数中占比P4 P4>90% 90%≥P4>80% 80%≥P4>70% 70%≥P4>60% P4≤60%
    I64 应急救援设备便捷程度 优(5) 良(4) 中等(3) 合格(2) 差(1)
    I65 应急演练频次η η>36次/a 36次/a≥η>24次/a 24次/a≥η>12次/a 24次/a≥η>6次/a η≤6次/a
    下载: 导出CSV

    表  2   1#通车隧道内各油气管段巡检安全风险指标评价值表

    隧道编号 安全风险评价指标值
    I11 I12 I13 I14 I21 I22 I23 I24 I25 I26 I27 I31 I32 I33 I34
    1# 40 4 5 4 5.28 450 3.08 0 0.2 4.4 2.5 2 203 6.2 19.81
    隧道编号 安全风险评价指标值
    I41 I42 I43 I44 I51 I52 I53 I54 I55 I61 I62 I63 I64 I65
    1# 48 25 4 4 0.01 4 25 2 5 88 91 89 4 2
    下载: 导出CSV

    表  3   1#通车隧道内各油气管段巡检作业安全风险评价指标的特征参数计算结果表

    指标序号 不同风险等级下特征参数(ExEnHe)计算结果
    低风险 较低风险 中等风险 较高风险 高风险
    I11 (60,5,0.333) (45,5,0.333) (25,1.666,0.111) (12.5,1.666,0.111) (2.5,0.833,0.056)
    I12 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I13 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I14 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I21 (1,0.166,0.011) (0.5,0.166,0.011) (-0.5,0.166,0.011) (-1.5,0.166,0.011) (-2,0.333,0.022)
    I22 (600,50,3.333) (450,50,3.333) (255,15,1) (187.5,7.5,0.5) (82.5,27.5,1.833)
    I23 (0.75,0.25,0.017) (1.75,0.083,0.006) (2.25,0.083,0.006) (2.75,0.083,0.006) (3,0.083,0.006)
    I24 (0,0.166,0.011) (-0.5,0.166,0.011) (-1.5,0.166,0.011) (-2.5,0.167,0.011) (-3,0.5,0.033)
    I25 (0.5,0.008,0.001) (0.475,0.008,0.001) (0.425,0.008,0.001) (0.375,0.008,0.001) (0.175,0.058,0.004)
    I26 (3.75,0.042,0.003) (3.625,0.042,0.003) (3.375,0.042,0.003) (3.25,0.083,0.006) (1.5,0.5,0.033)
    I27 (3,0.067,0.004) (2.8,0.067,0.004) (2.25,0.117,0.008) (1.6,0.1,0.007) (0.65,0.217,0.014)
    I31 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I32 (180,7.5,0.5) (157.5,7.5,0.5) (115,6.666,0.444) (74.5,6.833,0.456) (27,9,0.6)
    I33 (2.5,0.833,0.056) (5.75,0.25,0.017) (6.75,0.083,0.006) (7.25,0.083,0.006) (7.5,0.083,0.006)
    I34 (23.2,0.275,0.018) (22.375,0.275,0.018) (19.065,0.828,0.055) (14.92,0.553,0.037) (6.63,2.21,0.147)
    I41 (96,8,0.533) (72,8,0.533) (36,4,0.267) (18,2,0.133) (6,2,0.133)
    I42 (70,3.333,0.222) (60,3.333,0.222) (40,3.333,0.222) (20,3.333,0.222) (5,1.667,0.111)
    I43 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I44 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I51 (0.01,0.003,0) (0.015,0.002,0) (0.06,0.013,0.001) (0.225,0.042,0.003) (0.35,0.042,0.003)
    I52 (1.5,0.5,0.033) (4,0.333,0.022) (6.5,0.5,0.033) (9,0.333,0.022) (10,0.333,0.022)
    I53 (5,1.666,0.111) (15,1.666,0.111) (30,3.333,0.222) (50,3.333,0.222) (60,3.333,0.222)
    I54 (0.5,0.167,0.011) (3,0.666,0.044) (6.5,0.5,0.033) (10,0.666,0.044) (12,0.666,0.044)
    I55 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I61 (90,1.67,0.111) (85,1.67,0.111) (75,1.67,0.111) (65,1.67,0.111) (30,10,0.667)
    I62 (90,1.67,0.111) (85,1.67,0.111) (75,1.67,0.111) (65,1.67,0.111) (30,10,0.667)
    I63 (90,1.67,0.111) (85,1.67,0.111) (75,1.67,0.111) (65,1.67,0.111) (30,10,0.667)
    I64 (4.5,0.17,0.011) (3.5,0.17,0.011) (2.5,0.17,0.011) (1.5,0.17,0.011) (1,0.17,0.011)
    I65 (36,2,0.133) (30,2,0.133) (18,2,0.133) (9,1,0.067) (6,1,0.067)
    下载: 导出CSV

    表  4   1#通车隧道内各油气管段巡检安全风险评价指标因素权重计算结果表

    指标序号 G2 CRITIC 组合权重 指标序号 G2 CRITIC 组合权重
    I11 0.019 0.026 0.022 I41 0.022 0.029 0.025
    I12 0.016 0.025 0.020 I42 0.022 0.047 0.034
    I13 0.030 0.035 0.032 I43 0.069 0.029 0.050
    I14 0.013 0.024 0.018 I44 0.042 0.041 0.042
    I21 0.025 0.029 0.027 I51 0.035 0.039 0.037
    I22 0.050 0.042 0.046 I52 0.019 0.026 0.023
    I23 0.038 0.040 0.039 I53 0.028 0.034 0.031
    I24 0.042 0.041 0.041 I54 0.012 0.020 0.016
    I25 0.039 0.040 0.039 I55 0.035 0.039 0.037
    I26 0.023 0.029 0.026 I61 0.017 0.026 0.021
    I27 0.030 0.036 0.033 I62 0.032 0.039 0.035
    I31 0.053 0.042 0.048 I63 0.020 0.026 0.023
    I32 0.025 0.030 0.027 I64 0.022 0.027 0.024
    I33 0.082 0.048 0.066 I65 0.045 0.041 0.043
    I34 0.096 0.051 0.075
    下载: 导出CSV

    表  5   1#通车隧道内各油气管段巡检安全风险综合隶属度计算结果表

    二级指标序号 组合权重值 云模型综合隶属度
    低风险 较低风险 中等风险 较高风险 高风险
    I1 0.092 0.002 8 0.056 6 0.000 0 0.000 0 0.000 0
    I2 0.251 0.068 8 0.047 1 0.003 7 0.000 1 0.059 4
    I3 0.216 0.005 2 0.046 1 0.049 8 0.000 9 0.000 0
    I4 0.151 0.008 2 0.061 6 0.000 5 0.011 0 0.000 0
    I5 0.144 0.037 7 0.030 1 0.010 0 0.000 0 0.000 0
    I6 0.146 0.060 7 0.022 6 0.000 5 0.000 5 0.000 1
    下载: 导出CSV
  • [1] 曹闯明. 油气长输管道巡检中的智能视频监控技术[J]. 油气储运, 2018, 37(10): 1192-1195, 1200. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201810019.htm

    CAO C M. Intelligent video surveillance technology for the patrol of long-distance oil & gas pipelines[J]. Oil & Gas Storage and Transportation, 2018, 37(10): 1192-1195, 1200. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201810019.htm

    [2] 刘亮, 高海康, 徐杰, 王梓力, 韩文超, 欧新伟, 等. 基于完整性管理的管道巡检闭环平台的设计[J]. 油气储运, 2016, 35(9): 924-927. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201609003.htm

    LIU L, GAO H K, XU J, WANG Z L, HAN W C, OU X W, et al. Design of closed-loop pipeline inspection platform based on integrity management[J]. Oil & Gas Storage and Transportation, 2016, 35(9): 924-927. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201609003.htm

    [3]

    ABUBAKIROV R, YANG M, KHAKZAD N. A risk-based approach to determination of optimal inspection intervals for buried oil pipelines[J]. Process Safety and Environmental Protection, 2020, 134: 95-107. doi: 10.1016/j.psep.2019.11.031

    [4]

    KRAIDI L, SHAH R, MATIPA W, BORTHWICK F. Analyzing the critical risk factors associated with oil and gas pipeline projects in Iraq[J]. International Journal of Critical Infrastructure Protection, 2019, 24: 14-22. doi: 10.1016/j.ijcip.2018.10.010

    [5] 蒋仲安, 郑登锋, 曾发镔, 付明福, 张明星. 基于危险源理论的油气管道安全管理模型的研究[J]. 湖南大学学报(自然科学版), 2021, 48(4): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202104007.htm

    JIANG Z A, ZHENG D F, ZENG F B, FU M F, ZHANG M X. Study on safety management model of oil and gas pipeline based on hazard theory[J]. Journal of Hunan University (Natural Sciences), 2021, 48(4): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202104007.htm

    [6] 付明福, 张明星, 朱晓曼, 龚晓凤, 谭波. 油气长输管道作业分级定量风险评价方法研究及应用[J]. 中国安全生产科学技术, 2019, 15(7): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201907028.htm

    FU M F, ZHANG M X, ZHU X M, GONG X F, TAN B. Research and application of quantitative risk assessment method for operation classification of oil and gas long-distance pipeline[J]. Journal of Safety Science and Technology, 2019, 15(7): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201907028.htm

    [7] 李德毅, 刘常昱. 论正态云模型的普适性[J]. 中国工程科学, 2004, 6(8): 28-34. doi: 10.3969/j.issn.1009-1742.2004.08.006

    LI D Y, LIU C Y. Study on the universality of the normal cloud model[J]. Strategic Study of CAE, 2004, 6(8): 28-34. doi: 10.3969/j.issn.1009-1742.2004.08.006

    [8] 丁昊, 王栋. 基于云模型的水体富营养化程度评价方法[J]. 环境科学学报, 2013, 33(1): 251-257. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201301034.htm

    DING H, WANG D. The evaluation method of water eutrophication based on cloud model[J]. Acta Scientiae Circumstantiae, 2013, 33(1): 251-257. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201301034.htm

    [9] 沈进昌, 杜树新, 罗祎, 罗季阳, 杨倩, 陈志锋. 基于云模型的模糊综合评价方法及应用[J]. 模糊系统与数学, 2012, 26(6): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE201206018.htm

    SHEN J C, DU S X, LUO Y, LUO J Y, YANG Q, CHEN Z F. Method and application research on fuzzy comprehensive evaluation based on cloud model[J]. Fuzzy Systems and Mathematics, 2012, 26(6): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE201206018.htm

    [10]

    WANG T, WANG X T, WANG L, AU-YONG C P, ALI A S. Assessment of the development level of regional industrialized building based on cloud model: a case study in Guangzhou, China[J]. Journal of Building Engineering, 2021, 44: 102547.

    [11] 罗勋, 谢文强, 曾发镔. 基于云模型的复杂艰险山区深埋隧道施工通风系统综合评估[J]. 铁道学报, 2022, 44(3): 123-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202203008.htm

    LUO X, XIE W Q, ZENG F B. Comprehensive evaluation of construction ventilation system of deep-buried tunnel at high altitude based on cloud model[J]. Journal of the China Railway Society, 2022, 44(3): 123-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202203008.htm

    [12] 张满银, 王生新, 孙志忠, 徐震, 王沪生. 基于云理论的油气管道滑坡危险性综合评价[J]. 工程科学学报, 2018, 40(4): 427-437. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201804005.htm

    ZHANG M Y, WANG S X, SUN Z Z, XU Z, WANG H S. Comprehensive evaluation of landslide risks of oil and gas pipelines based on cloud theory[J]. Chinese Journal of Engineering, 2018, 40(4): 427-437. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201804005.htm

    [13] 贾博婷, 赵天威, 祝志川. 基于熵值修正G2赋权的综合评价方法及实证[J]. 统计与决策, 2019, 35(8): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201908008.htm

    JIA B T, ZHAO T W, ZHU Z C. Comprehensive evaluation method based on entropy value correction G2 weighting and its empirical analysis[J]. Statistics and Decision, 2019, 35(8): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201908008.htm

    [14] 王婧, 靳春玲, 贡力, 张鑫. 基于可变模糊集理论的铁路隧道塌方风险评价[J]. 铁道科学与工程学报, 2021, 18(5): 1364-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202105032.htm

    WANG J, JIN C L, GONG L, ZHANG X. Risk assessment of railway tunnel collapse based on variable fuzzy set theory[J]. Journal of Railway Science and Engineering, 2021, 18(5): 1364-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202105032.htm

    [15] 祝志川, 张国超, 张君妍. 基于改进CRITIC的修正G2赋权方法及实证[J]. 统计与决策, 2018, 34(18) : 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201818008.htm

    ZHU Z C, ZHANG G C, ZHANG J Y. Modified-G2 weighting method based on improved CRITIC and its solid evidence[J]. Statistics & Decision, 2018, 34(18): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201818008.htm

    [16] 魏久传, 许玉阳, 谢道雷, 刘晨雨, 仲崇武. 基于距离函数组合赋权法的突水危险性评价[J]. 中国矿业, 2021, 30(4): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202104028.htm

    WEI J C, XU Y Y, XIE D L, LIU C Y, ZHONG C W. The risk assessment of water bursting based on combination rule of distance function[J]. China Mining Magazine, 2021, 30(4): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202104028.htm

    [17] 王志杰, 王如磊, 舒永熙, 魏瑞, 王占军, 谭军. 高速公路特长隧道及隧道群运营安全风险评估研究[J]. 现代隧道技术, 2019, 56(增刊2): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2019S2006.htm

    WANG Z J, WANG R L, SHU Y X, WEI R, WANG Z J, TAN J. Study on operation safety risk assessment of the extra-long expressway tunnel and tunnel group[J]. Modern Tunnelling Technology, 2019, 56(S2): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2019S2006.htm

    [18] 张杨, 徐志胜, 楚坤坤, 赵家明. 基于模糊综合评判的终南山隧道防灾运营风险评估[J]. 灾害学, 2021, 36(3): 170-173, 234. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202103030.htm

    ZHANG Y, XU Z S, CHU K K, ZHAO J M. Research on operation risk assessment of Zhongnanshan tunnel based on fuzzy comprehensive evaluation method[J]. Journal of Catastrophology, 2021, 36(3): 170-173, 234. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202103030.htm

    [19] 崔铁军, 马云东. 基于AHP-云模型的巷道冒顶风险评价[J]. 计算机应用研究, 2016, 33(10): 2973-2976. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201610024.htm

    CUI T J, MA Y D. Risk evaluation of roadway roof fall based on AHP-cloud model[J]. Application Research of Computers, 2016, 33(10): 2973-2976. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201610024.htm

图(2)  /  表(5)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  2
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2022-05-08
  • 网络出版日期:  2023-08-20
  • 刊出日期:  2022-10-24

目录

/

返回文章
返回