张海峰, 蔡永军, 李柏松, 孙巍, 王海明, 杨喜良. 智慧管道站场设备状态监测关键技术[J]. 油气储运, 2018, 37(8): 841-849. DOI: 10.6047/j.issn.1000-8241.2018.08.001
引用本文: 张海峰, 蔡永军, 李柏松, 孙巍, 王海明, 杨喜良. 智慧管道站场设备状态监测关键技术[J]. 油气储运, 2018, 37(8): 841-849. DOI: 10.6047/j.issn.1000-8241.2018.08.001
ZHANG Haifeng, CAI Yongjun, LI Baisong, SUN Wei, WANG Haiming, YANG Xiliang. Key technologies of equipment condition monitoring at the station of intelligent pipeline[J]. Oil & Gas Storage and Transportation, 2018, 37(8): 841-849. DOI: 10.6047/j.issn.1000-8241.2018.08.001
Citation: ZHANG Haifeng, CAI Yongjun, LI Baisong, SUN Wei, WANG Haiming, YANG Xiliang. Key technologies of equipment condition monitoring at the station of intelligent pipeline[J]. Oil & Gas Storage and Transportation, 2018, 37(8): 841-849. DOI: 10.6047/j.issn.1000-8241.2018.08.001

智慧管道站场设备状态监测关键技术

Key technologies of equipment condition monitoring at the station of intelligent pipeline

  • 摘要: 以“全数字化移交、全智能化运营、全生命周期管理”的智慧管道建设为背景,探讨了物联网、大数据、云计算、人工智能等信息技术在智慧管道站场设备状态监测中的应用方式。为了满足状态监测的新需求和新模式,提出并研究了4项智慧管道站场设备状态监测关键技术:信息感知技术、数据存储技术、数据挖掘与智能分析技术、可视化展示技术。基于此,设计了包含4个层级的设备状态监测平台框架结构,分别为智能感知层、数据存储层、智能诊断层及可视化层。研究成果为智慧管道关键设备状态监测提供了技术方法。

     

    Abstract: In this paper, the application modes of Internet of Things, big data, cloud computing, artificial intelligence and other information technologies in the equipment condition monitoring at the station of intelligent pipeline were discussed in the background of intelligent pipeline construction of "full digital transfer, full intelligent operation and full life cycle management". In order to meet the new demands and modes of condition monitoring, 4 key technologies of equipment condition monitoring at the station of intelligent pipeline were proposed and researched, including information perception technology, data storage technology, data mining and intelligent analysis technology, and visual display technology. Then, a four-layer framework of equipment condition monitoring platform was designed correspondingly, including intelligent perception layer, data storage layer, intelligent diagnosis layer and visual layer. The relevant researches provide the technical method for the monitoring of key equipment condition of intelligent pipeline.

     

/

返回文章
返回