王勇, 肖文涛, 李雪, 刘刚, 樊林. 我国原油远洋运输的运作模式及面临挑战[J]. 油气储运, 2016, 35(7): 788-792. DOI: 10.6047/j.issn.1000-8241.2016.07.020
引用本文: 王勇, 肖文涛, 李雪, 刘刚, 樊林. 我国原油远洋运输的运作模式及面临挑战[J]. 油气储运, 2016, 35(7): 788-792. DOI: 10.6047/j.issn.1000-8241.2016.07.020
WANG Yong, XIAO Wentao, LI Xue, LIU Gang, FAN Lin. Operation mode and challenges of crude-oil ocean shipping in China[J]. Oil & Gas Storage and Transportation, 2016, 35(7): 788-792. DOI: 10.6047/j.issn.1000-8241.2016.07.020
Citation: WANG Yong, XIAO Wentao, LI Xue, LIU Gang, FAN Lin. Operation mode and challenges of crude-oil ocean shipping in China[J]. Oil & Gas Storage and Transportation, 2016, 35(7): 788-792. DOI: 10.6047/j.issn.1000-8241.2016.07.020

我国原油远洋运输的运作模式及面临挑战

Operation mode and challenges of crude-oil ocean shipping in China

  • 摘要: 我国原油远洋运输已发展成为集团化联盟运作模式,集团公司下属各家炼厂将采购的零散批次油品合理地拼装到大型油轮进行收集-运输-配送,从而节省远洋运输费用。原油远洋运输方案优化是一种包含空间、时间、船型及油种等多种维度变量组合优化的NP(Non-deterministic Polynomial)难问题,使运输优化模型的建立和求解面临极大的挑战。采用现代自启发式算法可以实现原油远洋运输方案优化,在算法实现过程中,应该改进编/解码规则实现约束因素的限制,减少罚函数的使用;对于大规模数据,建议采用方案分解优化方法,将各局部优化方案拼接成全局优化方案;建议进一步探索采用并行计算甚至“云计算”的方式,提高优化运输方案的搜索时效。

     

    Abstract: Over years' development, the crude-oil ocean shipping in China has evolved to a mode of collectivize alliance operation. In this mode, all refineries affiliated to an alliance assemble the small patches of purchased oil products rationally in a large oil tanker for transportation and distribution, so that the ocean shipping expenses can be reduced significantly. The optimization of crude-oil ocean shipping plan is a NP-hard problem involving multidimensional variables (e.g. space, time, ship modes, and oil types), which leads to a great challenge for the establishment and solution of transportation optimization model. The crude-oil ocean shipping plan can be optimized using the modern self-heuristic algorithm. While the algorithm is implemented, the encoding/decoding rules shall be improved so as to satisfy the constraint factors and reduce the use of penalty function. As for large-scale data, it is suggested to apply the decomposition optimization method to obtain local optimization schemes, and then integrate them together into a global optimization plan. Besides, it is recommended to explore how to adopt the parallel computation and even the "cloud computing" to optimize the searching time efficiency of transportation plans.

     

/

返回文章
返回