刘路, 李新民, 何岚, 周琰, 孙巍, 田孝忠. 基于优化支持向量机的管道安全威胁事件识别[J]. 油气储运, 2014, 33(11): 1225-1228. DOI: 10.6047/j.issn.1000-8241.2014.11.016
引用本文: 刘路, 李新民, 何岚, 周琰, 孙巍, 田孝忠. 基于优化支持向量机的管道安全威胁事件识别[J]. 油气储运, 2014, 33(11): 1225-1228. DOI: 10.6047/j.issn.1000-8241.2014.11.016
LIU Lu, LI Xinmin, HE Lan, ZHOU Yan, SUN Wei, TIAN Xiaozhong. Identification of threats to pipeline based on optimized support vector machine[J]. Oil & Gas Storage and Transportation, 2014, 33(11): 1225-1228. DOI: 10.6047/j.issn.1000-8241.2014.11.016
Citation: LIU Lu, LI Xinmin, HE Lan, ZHOU Yan, SUN Wei, TIAN Xiaozhong. Identification of threats to pipeline based on optimized support vector machine[J]. Oil & Gas Storage and Transportation, 2014, 33(11): 1225-1228. DOI: 10.6047/j.issn.1000-8241.2014.11.016

基于优化支持向量机的管道安全威胁事件识别

Identification of threats to pipeline based on optimized support vector machine

  • 摘要: 如何有效识别人工挖掘、机械挖掘和车辆经过等油气管道安全威胁事件,对基于相干瑞利的管道光纤安全预警系统至关重要。提出一种基于优化支持向量机的管道安全威胁事件识别方法,对管道光纤安全预警系统采集到的管道沿线振动信号进行分析,提取各频段的归一化能量与信号持续时间作为特征向量,利用人工蜂群算法对支持向量机的惩罚因子和核函数参数进行优化,采用优化后的支持向量机对特征进行分类。在港枣成品油管道开展安全试验,获得了90.7%的分类正确率,证明了该方法的有效性和工程应用价值。

     

    Abstract: Effective identification of threats to the oil/gas pipeline due to artificial excavation, mechanical excavation and vehicles passing is of vital importance to the pipeline optical fiber security precaution system based on coherent Rayleigh. This paper presents a pipeline threat identification method based on optimized support vector machine. The method is used to analyze the vibration signals along the pipeline collected by pipeline optical fiber safety precaution system, extract the normalization energy and signal duration of each frequency band as feature vector, use artificial bee colony algorithm to optimize the penalty factor and kernel function parameter of support vector machine and use the optimized support vector machine to classify features. The safety test was carried out on the GangZao Products Pipeline with the accuracy of classification up to 90.7%, which proves the effectiveness and engineering value of the proposed method.

     

/

返回文章
返回