姜俊泽, 张伟明, 周龙江, 李正阳. 基于小波支持向量机的机动管道排空时间预测[J]. 油气储运, 2013, 32(5): 508-512. DOI: 10.6047/j.issn.1000-8241.2013.05.012
引用本文: 姜俊泽, 张伟明, 周龙江, 李正阳. 基于小波支持向量机的机动管道排空时间预测[J]. 油气储运, 2013, 32(5): 508-512. DOI: 10.6047/j.issn.1000-8241.2013.05.012
Jiang Junze, Zhang Weiming, Zhou Longjiang, Li Zhengyang. Wavelet support vector machine-based prediction for emptying time of mobile pipeline[J]. Oil & Gas Storage and Transportation, 2013, 32(5): 508-512. DOI: 10.6047/j.issn.1000-8241.2013.05.012
Citation: Jiang Junze, Zhang Weiming, Zhou Longjiang, Li Zhengyang. Wavelet support vector machine-based prediction for emptying time of mobile pipeline[J]. Oil & Gas Storage and Transportation, 2013, 32(5): 508-512. DOI: 10.6047/j.issn.1000-8241.2013.05.012

基于小波支持向量机的机动管道排空时间预测

Wavelet support vector machine-based prediction for emptying time of mobile pipeline

  • 摘要: 机动管道在输送油品和地形条件固定的情况下,管道长度、空压机的排气压力和排气量是影响管道排空作业时间的主要因素,但几种因素对排空时间的影响呈现复杂的非线性关系。以机动管道排空过程的实验数据为基础,分析了排空时间随各影响因素的变化规律。通过分析,发现各因素与排空时间之间具有较好的关联性,用支持向量回归的方法可以对排空时间进行预测。在对样本数据进行训练和预测时,采用基于morlet小波核的支持向量回归方法,并与高斯核的预测效果进行对比,发现小波核比高斯核具有更好的排空时间预测效果,并给出了管道气顶排空时间预报公式。

     

    Abstract: For the mobile pipeline, if fuel oil is single and the terrain where the pipeline located is changeless, the pipeline length, air compressor discharge pressure and air displacement will be main factors affecting pipeline emptying operation time. But these factors follow a complex nonlinear relationship of impacts on the emptying time. Experimental data for emptying process of mobile pipelines is taken as the basis to analyze the law for changes in the emptying time with influencing factors. As shown from the analysis, the factors follow a better correlation with the emptying time, and the method of support vector regression can be used to predict the emptying time. In the practice and prediction of sample data, Morlet wavelet kernel-based support vector regression method is used and its prediction effects are compared with those of Gaussian kernel-based support vector regression, which indicates that the wavelet kernel can provide better prediction effects. In addition, a pipeline gas-cap emptying time prediction formula is given.

     

/

返回文章
返回