刘勇峰, 吴明, 姜永明, 吕露. 基于灰色系统理论的蜡沉积速率预测模型[J]. 油气储运, 2012, 31(1): 17-19. DOI: 10.6047/j.issn.1000-8241.2012.01.004
引用本文: 刘勇峰, 吴明, 姜永明, 吕露. 基于灰色系统理论的蜡沉积速率预测模型[J]. 油气储运, 2012, 31(1): 17-19. DOI: 10.6047/j.issn.1000-8241.2012.01.004
Liu Yongfeng, Wu Ming, Jiang Yongming, Lv Lu. Grey system theory-based wax deposit rate prediction model for oil pipeline[J]. Oil & Gas Storage and Transportation, 2012, 31(1): 17-19. DOI: 10.6047/j.issn.1000-8241.2012.01.004
Citation: Liu Yongfeng, Wu Ming, Jiang Yongming, Lv Lu. Grey system theory-based wax deposit rate prediction model for oil pipeline[J]. Oil & Gas Storage and Transportation, 2012, 31(1): 17-19. DOI: 10.6047/j.issn.1000-8241.2012.01.004

基于灰色系统理论的蜡沉积速率预测模型

Grey system theory-based wax deposit rate prediction model for oil pipeline

  • 摘要: 基于灰色系统理论建立了管输原油蜡沉积速率灰色预测模型,借助该模型可以得到多个不同影响因素相互作用的结果,从而避免了因片面考察个别因素而影响预测结果客观性的问题。实例验证结果表明:该模型预测结果的平均相对误差为2.376%,优于逐步回归预测模型;在管壁处剪切应力、管壁处温度梯度、管壁处蜡分子质量分数梯度和原油动力粘度4个影响因素中,管壁处蜡分子质量分数梯度对蜡沉积速率的影响最大。该模型算法简单,易于掌握,可提供的信息量较大,但仍属于静态模型,欲使模型更加完善,需要建立动态灰色预测模型。

     

    Abstract: Gray prediction model of wax deposit rate suitable for oil pipeline is built based on grey system theory. Applying this model can obtain the interaction result from different influencing factors, so as to avoid the non-objectivity of the result caused by unilateral study of individual factor. A case study shows that the average relative error from the prediction model is 2.376%, which is better than the stepwise regression prediction model. Mass fraction of wax molecular at pipe wall has greatest impact on wax deposit rate, and great in turn at pipe wall is shearstress, temperature gradient, wax molecular mass fraction and viscosity of crude oil. The model is simple with large amount of information. However, it is a static model, and a dynamic grey model is desired to get a better model.

     

/

返回文章
返回