胡松青, 石鑫, 胡建春, 任振甲, 郭爱玲, 高元军. 基于BP神经网络的输油管道内腐蚀速率预测模型[J]. 油气储运, 2010, 29(6): 448-450. DOI: 10.6047/j.issn.1000-8241.2010.06.014
引用本文: 胡松青, 石鑫, 胡建春, 任振甲, 郭爱玲, 高元军. 基于BP神经网络的输油管道内腐蚀速率预测模型[J]. 油气储运, 2010, 29(6): 448-450. DOI: 10.6047/j.issn.1000-8241.2010.06.014
Hu Songqing, Shi Xin, Hu Jianchun, . BP Neural Network-based Prediction Model for Internal Corrosion Rate of Oil Pipelines[J]. Oil & Gas Storage and Transportation, 2010, 29(6): 448-450. DOI: 10.6047/j.issn.1000-8241.2010.06.014
Citation: Hu Songqing, Shi Xin, Hu Jianchun, . BP Neural Network-based Prediction Model for Internal Corrosion Rate of Oil Pipelines[J]. Oil & Gas Storage and Transportation, 2010, 29(6): 448-450. DOI: 10.6047/j.issn.1000-8241.2010.06.014

基于BP神经网络的输油管道内腐蚀速率预测模型

BP Neural Network-based Prediction Model for Internal Corrosion Rate of Oil Pipelines

  • 摘要: 采用BP神经网络技术,以原油硫含量、酸值、温度、压力和流速作为输入参数,以管道内腐蚀速率作为输出参数,建立了输油管道的内腐蚀速率预测模型。预测了各因素对管道内腐蚀规律的影响,结果表明:硫含量和酸值是影响输油管道内腐蚀的主要因素。预测结果和模拟实验数据吻合较好,表明BP神经网络模型能较准确地预测管道内腐蚀速率。

     

    Abstract: Based on BP neural network technique, taking crude oils sulphur content, acid value, temperature, pressure and flow rate as input parameters and internal corrosion rate as output parameter, prediction model of internal corrosion rate for oil pipeline is built.Influence of different factors on internal corrosion rules of pipeline is predicted.Prediction results fit simulated test data perfectly, which indicates that BP neural network model can accurately predict internal corrosion rate of oil pipelines.

     

/

返回文章
返回