王帅华, 秦晓霞, 姬蕊, 刘静. MATLAB神经网络在管道土壤腐蚀评价中的应用[J]. 油气储运, 2009, 28(11): 57-59. DOI: 10.6047/j.issn.1000-8241.2009.11.016
引用本文: 王帅华, 秦晓霞, 姬蕊, 刘静. MATLAB神经网络在管道土壤腐蚀评价中的应用[J]. 油气储运, 2009, 28(11): 57-59. DOI: 10.6047/j.issn.1000-8241.2009.11.016
WANG Shuaihua, QIN Xiaoxia, . Application of MATLAB Neural Network in Soil Corrosion Evaluation of Pipeline[J]. Oil & Gas Storage and Transportation, 2009, 28(11): 57-59. DOI: 10.6047/j.issn.1000-8241.2009.11.016
Citation: WANG Shuaihua, QIN Xiaoxia, . Application of MATLAB Neural Network in Soil Corrosion Evaluation of Pipeline[J]. Oil & Gas Storage and Transportation, 2009, 28(11): 57-59. DOI: 10.6047/j.issn.1000-8241.2009.11.016

MATLAB神经网络在管道土壤腐蚀评价中的应用

Application of MATLAB Neural Network in Soil Corrosion Evaluation of Pipeline

  • 摘要: 根据现场的土壤腐蚀数据,利用BP人工神经网络原理,借助MATLAB神经网络工具箱函数,设计了土壤理化性质与碳钢腐蚀速率的网络仿真模型,并给出了应用实例,仿真效果显示,预测值与实际值相差很小。通过对X70钢在土壤中的腐蚀速率进行成功预测,证明神经网络在管道土壤腐蚀速率预测中具有实际应用价值。

     

    Abstract: According to soil corrosion data and by means of principle of BP artificial neural network, an network simulation model for soil physicochemical property and corrosion rate of carbon steel is designed with MATLAB Neural Network Tool and a practical case shows that simulation effectiveness is remarkable and errors between predicted value and true value are minor. Prediction on corrosion rate of X70 pipe steel in soil is made. Result show that the BP artificial neural network is practical in prediction of soil corrosion rate.

     

/

返回文章
返回