屈海利, 刘进立. 求解野战输油管道输送能力的数学模型[J]. 油气储运, 2006, 25(7): 15-18. DOI: 10.6047/j.issn.1000-8241.2006.07.005
引用本文: 屈海利, 刘进立. 求解野战输油管道输送能力的数学模型[J]. 油气储运, 2006, 25(7): 15-18. DOI: 10.6047/j.issn.1000-8241.2006.07.005
QU Haili, LIU Jinli. The Mathematics Model to Calculate Field Pipeline Capacity[J]. Oil & Gas Storage and Transportation, 2006, 25(7): 15-18. DOI: 10.6047/j.issn.1000-8241.2006.07.005
Citation: QU Haili, LIU Jinli. The Mathematics Model to Calculate Field Pipeline Capacity[J]. Oil & Gas Storage and Transportation, 2006, 25(7): 15-18. DOI: 10.6047/j.issn.1000-8241.2006.07.005

求解野战输油管道输送能力的数学模型

The Mathematics Model to Calculate Field Pipeline Capacity

  • 摘要: 野战输油管道的长度因战场的变化而不同,运用流体力学、概率论和组合数学建立了管道平均可达流量在管子可靠性、连接的可靠性、阀门可靠性、泵站可靠性、稳定时间和调节频率等因素影响下随管道长度变化的数学模型。该数学模型计算的结果表明,管道的输送能力随泵机组可靠度的降低和管道长度的增加而减小。该数学模型有助于决策者根据战场情况预知将要敷设的管道可能达到的输送量。

     

    Abstract: The length of field pipeline varies in different battlefields. This paper, applying hydromechanics, probability theory and combination mathematics, builds a mathematics model calculating the change of pipeline capacity with the length of pipelines under the effect of reliability of pipes, connections, valves and pump stations, the time of consistent stable operation and frequency of adjustment of the system. Result calculated by the mathematics model indicates that pipeline capacity decreases as the length of pipeline increases and reliability of pump unit reduces. The mathematics model can help system planner to predict the maximum throughput of a pipeline to be built.

     

/

返回文章
返回