蒋仕章, 王清华, 樊成. 输气管道内腐蚀速度BP神经网络预测模型[J]. 油气储运, 2002, 21(7): 22-24, 42. DOI: 10.6047/j.issn.1000-8241.2002.07.007
引用本文: 蒋仕章, 王清华, 樊成. 输气管道内腐蚀速度BP神经网络预测模型[J]. 油气储运, 2002, 21(7): 22-24, 42. DOI: 10.6047/j.issn.1000-8241.2002.07.007
JIANG Shizhang, WANG Qinghua, . The Predicting Model of the Neural Network to Internal Corrosion Velocity in Gas Pipeline Based on MALAB[J]. Oil & Gas Storage and Transportation, 2002, 21(7): 22-24, 42. DOI: 10.6047/j.issn.1000-8241.2002.07.007
Citation: JIANG Shizhang, WANG Qinghua, . The Predicting Model of the Neural Network to Internal Corrosion Velocity in Gas Pipeline Based on MALAB[J]. Oil & Gas Storage and Transportation, 2002, 21(7): 22-24, 42. DOI: 10.6047/j.issn.1000-8241.2002.07.007

输气管道内腐蚀速度BP神经网络预测模型

The Predicting Model of the Neural Network to Internal Corrosion Velocity in Gas Pipeline Based on MALAB

  • 摘要: 人工神经网络是模仿人脑神经元结构、特性和大脑认知功能而构成的新型信号、信息处理系统。利用实验获得的输气管道在气相或液相中含有H2S、CO2、缓蚀剂浓度与其所导致的内腐蚀速度值, 采用Levenberg-Marquardt算法建立了输气管道内腐蚀速度BP神经网络预测模型。利用该模型对输气管道内腐蚀速度进行了预测, 取得了比较满意的效果。

     

    Abstract: Artificial neural network (ANN), which simulates frame, the character and the cognizing ability of nerve element of cerebrum, is a new system that can handle many kinds of information and semaphore. By use of the obtained-by-test internal corrosion velocity values caused by H2S, CO2 and corrosion-control agent concentration in gas phase or liquid phase, the predicting model of artificial neural network to inter- nal corrosion velocity in gas pipeline with Levenberg-Marquardt algorithm is established in the article. The predicting model of neural network with the data samples of relationship between H2S, CO2 and corrosion-control agent and the internal corrosion velocity is trained and applied to forecast the internal corrosion velocity in gas pipeline, the results is content.

     

/

返回文章
返回