甲醇及甲醇汽油掺混输送体系腐蚀行为研究进展

Research progress on corrosion behavior in methanol and methanol-gasoline blended transport systems

  • 摘要:
    目的 甲醇及甲醇汽油在管道输送过程中易引发金属材料的腐蚀与应力腐蚀开裂问题,严重威胁能源输送系统的安全性与完整性。探究甲醇及甲醇汽油掺混输送体系的腐蚀行为,有利于促进“醇-氢”能源基础设施的安全、高效发展。
    方法 通过调研国内外甲醇与甲醇汽油掺混对金属腐蚀的研究进展,总结了甲醇的腐蚀机理,全面梳理了甲醇及甲醇汽油掺混对不同金属的腐蚀规律,并对未来甲醇及甲醇汽油掺混体系腐蚀研究的重点方向提出了可行性建议。
    结果 甲醇管道的腐蚀环境更为复杂,需要综合考量多种杂质、应力等因素的协同作用。甲醇腐蚀主要表现为电化学腐蚀与应力腐蚀开裂,甲醇解离产生的甲氧基阴离子(CH3O-)与金属反应形成甲醇层钝化物,并在高电位诱导下钝化物溶解形成电化学腐蚀;应力能够加速金属在甲醇环境中的晶间腐蚀、穿/沿晶裂纹扩展,并诱发应力腐蚀开裂。甲醇中掺入的氯化物、硫化物将促进腐蚀过程,而加入体积分数为0.5%的水时,金属在甲醇溶液中可以形成稳定的钝化膜进而抑制腐蚀。掺混比例的增大将会促进甲醇汽油对金属的腐蚀行为,且与钢、铝、铸铁相比,紫铜、黄铜在甲醇汽油中具有更高的腐蚀敏感性。
    结论 基于复杂输送环境中的甲醇及甲醇汽油腐蚀行为机理尚不明确等问题,提出以下建议:①进一步研究杂质-材质-应力关联作用下,甲醇及甲醇汽油对金属的腐蚀行为与内在腐蚀机理;②考虑甲醇及甲醇汽油未来大规模储运的需求,应结合甲醇管道实际的输送环境、材料失效状况,加快开展管材在甲醇临界失效边界的检验与腐蚀风险评价体系研究。

     

    Abstract:
    Objective Pipeline transport of methanol and methanol-gasoline blends increases the risk of corrosion and stress corrosion cracking in metallic materials, posing significant threats to the safety and integrity of energy infrastructure. Investigating corrosion behavior in these transport systems is essential for advancing the safe and efficient development of “methanol-hydrogen” energy infrastructure.
    Methods Through review of the domestic and international research progress on the corrosion of metals caused by methanol and methanol-gasoline blends, the corrosion mechanism of methanol was summarized. The corrosion laws of different metals in methanol and methanol-gasoline blends were comprehensively examined, and feasible suggestions for the future key research directions of corrosion in methanol and methanol-gasoline blended systems were put forward.
    Results The corrosion environment of methanol pipelines is more complex, with corrosion influenced by impurities, stress, and other factors. Corrosion primarily occurs via electrochemical processes and stress corrosion cracking. Methoxy anions (CH3O-) from methanol dissociation react with metals to form passivation layers, which dissolve under high potential, leading to electrochemical corrosion. Stress accelerates intergranular corrosion and crack propagation, promoting stress corrosion cracking. Chlorides and sulfides in methanol exacerbate corrosion, while adding 0.5% water by volume can form a stable passivation film, inhibiting corrosion. Higher methanol-gasoline blending ratios increase metal corrosion. Compared to steel, aluminum, and cast iron, copper and brass exhibit greater corrosion sensitivity in methanol-gasoline environments.
    Conclusion Given the unclear corrosion mechanisms of methanol and methanol-gasoline in complex transport environments, the following suggestions are put forward: (1) further investigate the corrosion behavior and mechanisms of methanol and methanol-gasoline for metals under the combined effects of impurities, materials, and stress; (2) accelerate research on critical failure thresholds of pipe materials and corrosion risk assessment systems, aligned with large-scale storage and transport demands and actual pipeline conditions.

     

/

返回文章
返回