康叶伟,吴长访,郭正虹. 储罐底板在线检测机器人定位系统开发及性能测试[J]. 油气储运,2025,44(7):794−803. DOI: 10.6047/j.issn.1000-8241.2025.07.008
引用本文: 康叶伟,吴长访,郭正虹. 储罐底板在线检测机器人定位系统开发及性能测试[J]. 油气储运,2025,44(7):794−803. DOI: 10.6047/j.issn.1000-8241.2025.07.008
KANG Yewei, WU Changfang, GUO Zhenghong. Development and performance testing of a positioning system for tank floor in-service inspection robots[J]. Oil & Gas Storage and Transportation, 2025, 44(7): 794−803. DOI: 10.6047/j.issn.1000-8241.2025.07.008
Citation: KANG Yewei, WU Changfang, GUO Zhenghong. Development and performance testing of a positioning system for tank floor in-service inspection robots[J]. Oil & Gas Storage and Transportation, 2025, 44(7): 794−803. DOI: 10.6047/j.issn.1000-8241.2025.07.008

储罐底板在线检测机器人定位系统开发及性能测试

Development and performance testing of a positioning system for tank floor in-service inspection robots

  • 摘要:
    目的 精确的定位能力对于储罐底板在线检测机器人的避障、缺陷量化及自主导航功能的实现极为重要。在金属储罐环境下实现机器人的精确定位,不仅需要确保定位原理的合理性,更需要在工程实践中具有可行性。
    方法 利用机器人携带的2个声波发射换能器(信标)主动发射声波,通过储罐外壁布设的多个声波接收换能器,基于声波到达时差的双曲线定位原理,可实现储罐底板检测机器人的定位,进而确定缺陷的位置。在实现系统定位时,为了满足油气环境下的安全运行,对定位信标、罐壁换能器进行了防爆设计;在定位算法方面,为了避免经验声速对定位精度的影响,通过声速场估计算法解决声速的合理取值问题;为了进一步提高时差计算的精度,通过广义互相关方法进行声波时延估计;针对信标靠近罐壁时声波混响会导致时延计算不准确,从而导致定位结果偏差较大的问题,引入惯性测量单元(Inertial Measuring Unit, IMU),将声波定位系统与IMU融合,提高定位结果的可靠性,同时提升机器人的整体定位精度。
    结果 物理试验验证与数值模拟结果表明,在多措施补偿的情况下,开发的定位系统位置误差不大于10 cm、方向角误差小于5° ,满足储罐环境下机器人精确定位的需求。
    结论 基于声波到达时差的定位系统,在辅助声速测量以及融合IMU的情况下,能够在圆柱体钢制储罐环境下实现可靠的精确定位,可为实现机器人检测功能的自动化与智能化提供技术支撑。

     

    Abstract:
    Objective Precise positioning capability is essential for enabling tank floor in-service inspection robots to avoid obstacles, quantify defects, and achieve autonomous navigation. Accurately positioning these robots in metal tank environments demands not only rational positioning principles but also practical engineering practices.
    Methods Two acoustic emission transducers (beacons) carried by the robots are used to actively emit sound waves and multiple acoustic receiving transducers are mounted on the outer tank wall. This arrangement facilitates the positioning of tank floor inspection robots and the subsequent identification of defect locations by leveraging the hyperbolic positioning principle, which is based on the time difference of arrival (TDOA) of sound waves. The positioning beacons and transducers on the tank wall are designed to be explosion-proof, ensuring safe operation during positioning tasks in oil and gas environments. To mitigate the impact of empirical sound velocity methods on positioning accuracy, a sound velocity field estimation algorithm is employed to maintain rational sound velocity value ranges. Furthermore, to improve the accuracy of TDOA calculations, a generalized cross-correlation method is incorporated to estimate the time delay of the sound waves. To address the challenge of acoustic reverberation, which can lead to inaccuracies in time delay calculations, especially when a beacon is positioned close to the tank wall, an inertial measuring unit (IMU) is introduced. The integration of the IMU into the acoustic positioning system enhances the reliability of positioning results and improves the overall accuracy of robot positioning.
    Results The results of verification through physical experiments and numerical simulations demonstrated that by utilizing a multiple-measure compensation mechanism, the developed positioning system achieved positional errors of no more than 10 cm and directional angle errors of less than 5° , thus meeting the requirements for precise robot positioning in tank environments.
    Conclusion The positioning system based on TDOA of sound waves enables reliable and accurate positioning in cylindrical steel tank environments, supported by auxiliary sound velocity measurements and an IMU. This system provides robust support for the automation and intelligent functions of inspection robots.

     

/

返回文章
返回